
Efficient List-Decoding with
Constant Alphabet and List Sizes

Zeyu Guo

University of Haifa

Joint work with Noga Ron-Zewi

Message

Sender Encoder Decoder Receiver

Noisy
Channel

Codeword Received
word Message

[Hamming, Shannon ‘40s]

Error-Correcting Codes

Error-Correcting Codes

Ø Alphabet Σ, message length 𝑘, codeword length 𝑛

Rate: 𝑅 = !
"~ redundancy in encoding

Code: 𝐶: Σ! → Σ", maps messages to codewords

Minimum distance:
Ø For 𝑥, 𝑦 ∈ Σ", the (relative) distance dist(𝑥, 𝑦)	is the

fraction of coordinates where 𝑥 and 𝑦 differ
Ø The (relative) minimum distance of 𝐶 is

𝛿 = min(dist(𝑥, 𝑦):	𝑥, 𝑦 ∈ 𝐶,	𝑥 ≠ 𝑦)

Unique Decoding
Unique decoding:
Ø Adversary corrupts 𝑝 fraction of coordinates
Ø Given 𝑦 ∈	Σ𝑘, decoder finds the unique 𝑥 ∈	𝐶 such

that dist(𝑥,	𝑦) ≤	𝑝
Ø Must have 𝑝 ≤	𝛿/2

𝛿

𝑥

𝑝
𝑦

List Decoding
List decoding [Elias, Wozencraft ‘50s]:
Ø Adversary corrupts 𝑝 fraction of coordinates
Ø Given 𝑦 ∈	Σ𝑘, decoder finds a short list of 𝑥 ∈	𝐶 such

that dist(𝑥,	𝑦) ≤	𝑝 for every 𝑥 in the list
Ø Can correct more than 𝛿/2	fraction of errors

𝛿

𝑥

𝑝
𝑦

Advantages of List Decoding

Ø Bridge between Hamming Channel & Shannon Channel
Ø Sometimes can use context / side information even if

list size >1

Define the (relative) agreement agr(𝑥, 𝑦)	= 1	−	dist(𝑥, 𝑦)
For unique decoding, dist(𝑥, 𝑦) ≤	𝛿/2	≤	1/2
Ø Can recover 𝑥 from 𝑦 only if agr(𝑥, 𝑦)	≥	1/2

For list decoding, can have dist(𝑥, 𝑦) close to 1
Ø Can find a short list of candidates 𝑥 from 𝑦 even if agr(𝑥, 𝑦)	is small

In coding theory:

In TCS:

Advantages of List Decoding
TCS apps:

3. Complexity theory:

Ø Derandomization / Construction of PRGs
[Babai-Fortnow-Nisan-Wigderson’93, Sudan-Trevisan-Vadhan’99]

Ø Average-to-worst-case reductions
[Lipton’89, Cai-Pavan-Sivakumar’99, Goldreich-Rubinfeld-Sudan’99]

1. Cryptography: Hard-core predicates [Goldreich-Levin’89]

Ø Boolean functions [Goldreich-Levin’89]
Ø Decision trees [Kushilevitz-Mansour’91]

2. Learning:

Ø CNFs / DNFs [Jackson’94]

Ø Ideally, we want a code of rate 𝑅 that is
• list decodable up to radius ≈ 1 − 𝑅
• with small list size and small alphabet size
• explicit and efficiently list decodable

For 𝑅, 𝜀 ∈ (0,1), there exist (non-explicit) codes of
rate 𝑅 that are list decodable up to radius 1 − 𝑅 − 𝜀
with list size 𝑂(1/𝜀) and alphabet size 2#(%/')

List Decoding Capacity Theorem:

Are there explicit capacity-achieving list decodable
codes with similar parameters?

List decoding
capacity

List Decodable Codes

Ø A Reed-Solomon code over 𝐹) is given by the encoding
map 𝐹)!→ 𝐹)" defined by

𝑓 ↦ (𝑓(𝛼1), 𝑓(𝛼2),⋯ , 𝑓(𝛼𝑛))

where 𝑓 is a univariate polynomial of degree < 𝑘 and
𝛼1, 𝛼2, ⋯ , 𝛼𝑛 ∈ 𝐹) are 𝑛 distinct evaluation points
Ø Guruswami and Sudan proved that RS codes are efficiently

list decodable up to radius 1 − 𝑅 (known as the Johnson
bound) [Sudan’97, Guruswami-Sudan’99]

Ø Most RS codes are list decodable beyond the Johnson
bound [Rudra-Wootters’14, GLSTW’20]

Ø However, it is not known if RS codes can achieve the
capacity 1 − 𝑅

Reed-Solomon codes

Ø Folded Reed-Solomon codes [Guruswami-Rudra’05] are
the first explicit codes that achieve the rate 1 − 𝑅 − 𝜀

Ø It is obtained by combining 𝑚 = 𝑂(1/𝜀2) symbols into one

𝑓 ↦
𝑓(𝛼1)
𝑓(𝛾𝛼1)
𝑓(𝛾2𝛼1)

,
𝑓(𝛼2)
𝑓(𝛾𝛼2)
𝑓(𝛾2𝛼2)

,⋯ ,
𝑓(𝛼𝑛)
𝑓(𝛾𝛼𝑛)
𝑓(𝛾2𝛼𝑛)

Ø Alphabet size 𝑛#(%/'!)

Ø List size 1/𝜀 #(%/') [Kopparty-Ron-Zewi-Saraf-
Wootters’18]

Folded Reed-Solomon codes

Ø Subcodes of AG codes [Guruswami-Xing’13]
• Alphabet size 2 *#(%/'!)

• List size 2+,-.(%/') M 2/!
"($%&∗()

Ø Multi-level concatenation of FRS codes + expander-
based amplification [Kopparty-Ron-Zewi-Saraf-
Wootters’18]
• Alphabet size 2+,-.(%/')

• List size 2/!
!"(*/,)

• Encoding time 2+,-.(%/') M poly(𝑛)

Other Constructions

There exist codes 𝐶: Σ! → Σ" of rate 𝑅 that are list
decodable up to radius 1 − 𝑅 − 𝜀 with list size 2+,-.(%/')
and alphabet size 2 *#(%/'!).
• The encoding time is poly(𝑛, 1/𝜀)
• The list is contained in a subspace of dimension poly(1/𝜀),

whose basis can be found in time poly(𝑛, 1/𝜀)
• Outputting the list takes time 2!"#$(&/() 6 poly(𝑛)

Ø Our proof heavily depends on [Guruswami-Xing’13].
One key new idea is the use of BTT subspaces.

Our Result

Moreover:

Ø A (𝑘,𝑚, 𝑟) block-triangular-Toeplitz (BTT) matrix
over 𝐹 is a 𝑘𝑚×𝑘𝑟 full rank matrix over 𝐹 that is
both block-lower-triangular and block-Toeplitz
as a 𝑘×𝑘 block matrix

𝑘 = 4:

Ø A subspace of 𝐹𝑘𝑚 is a (𝑘,𝑚, 𝑟) BTT subspace if it
is the image of 𝑣 ↦ 𝑀𝑣

𝑀1 0 0 0
𝑀2 𝑀1 0 0
𝑀3 𝑀2 𝑀1 0
𝑀4 𝑀3 𝑀2 𝑀1

BTT matrix/subspace

Overview of Our Construction
Ø Let Σ = 𝐹)2 where 𝑞 = poly(1/𝜀) and 𝑚 = 𝑂(1/𝜀2)

1) We first construct a list decodable code 𝐶′: Σ! → Σ"
such that the list of candidate messages is contained
in a small BTT subspace of Σ! ≅ 𝐹)!2

2) Then we construct an explicit subspace 𝑊 ⊆ 𝐹)!2 of
low codimension that evades any BTT subspace

Ø The final code is obtained by restricting the message
space of 𝐶3 to 𝑊, which reduces the list size to
constant

RS code with subfield evaluations
Ø The code 𝐶′ is a “AG code with subfield evaluations”

[Guruswami-Xing’13]
Ø We explain the idea using “RS codes with subfield

evaluations”
Ø An RS code over 𝐹) is defined by the encoding map

𝑓 ↦ 𝐶𝑓 ∶= (𝑓(𝛼1), 𝑓(𝛼2),⋯ , 𝑓(𝛼𝑛))

where 𝛼1, 𝛼2, ⋯ , 𝛼𝑛 ∈ 𝐹) are 𝑛 distinct evaluation points
Ø An “RS code with subfield evaluations” is simply an RS

code over an extension field 𝐹)- with 𝛼1, 𝛼2, ⋯ , 𝛼𝑛 ∈ 𝐹)

Finding the BTT subspace
Ø Given 𝑦, we want to find a BTT subspace containing

the list of all 𝑓 satisfying dist(𝐶𝑓, 𝑦) ≤ 1 − 𝑅 − 𝜀

Ø We can find a low degree multivariate polynomial
𝑄 𝑌1, 𝑌2, ⋯ , 𝑌𝑠 over 𝐹)- 𝑋 such that

𝑄 𝑓, 𝑓), ⋯ , 𝑓)./* = 0

Ø As 𝑄∗(𝑓) ∈ 𝐹)- 𝑋 , we get a collection of equations
by equating the coefficients of 𝑄∗(𝑓) with zero

Ø This system of linear equations is represented by a
BTT matrix 𝑀

Ø So 𝑓 is contained in ker 𝑀 whose basis can be found
efficiently

Ø Finally, we show that the kernel of a BTT matrix is a
BTT subspace, so ker 𝑀 is a BTT subspace

𝑄∗(𝑓): =

Algebraic-Geometric Codes
Ø For Reed-Solomon codes, we need 𝑞 ≥ 𝑛 to

get 𝑛 evaluation points
Ø To make the alphabet size independent of 𝑛, we use

AG codes (with subfield evaluations)
Ø AG codes are generalizations of Reed-Solomon codes,

where lines are generalized by algebraic curves
Ø Can have arbitrarily many # evaluation points over 𝐹)

for fixed 𝑞 by using more and more complicated
algebraic curves

Ø We use explicit curves from the Garcia-Stichtenoth
tower [Garcia-Stichtenoth’96], following [Guruswami-
Xing’13]

Algebraic-Geometric Codes
Ø Two properties used for RS codes:

1) Let 𝑉 be the space of degree-𝑑 polynomials. Then
any nonzero 𝑓 ∈ 𝑉 has at most 𝑑 zeros

2) Dimension of 𝑉 is 𝑑 + 1
Ø They are generalized for AG codes

1) There is an analogous space 𝑉 for “degree-𝑑
polynomials” (called a Riemann-Roch space), and
any nonzero 𝑓 ∈ 𝑉 has at most 𝑑 zeros

2) Dimension of 𝑉 is in [𝑑 − 𝑔 + 1, 𝑑 + 1], where 𝑔 ≥ 0
is called the genus

Ø In the GS tower, there is a good upper bound for 𝑔

BTT Evasive Subspace

Ø A (𝑘,𝑚, 𝑟, 𝑠) BTT evasive subspace is a subspace 𝑊 ⊆ 𝐹)!2
such that for any (𝑘,𝑚, 𝑟) BTT subspace 𝑉,

dim(𝑉⋂𝑊) ≤ 𝑠

Ø Restricting the message space Σ! ≅ 𝐹)!2 to 𝑊 reduces
the list size to 𝑞5 = 2 *#(%/'!), and yields the desired code

There exists an explicit (𝑘,𝑚, 𝜀𝑚, 𝑠) BTT evasive
subspace 𝑊 ⊆ 𝐹)!2 of codimension 𝑂(𝜀𝑘𝑚), where
𝑠 = poly(1/𝜀)

Theorem: [GR’20]

Periodic Subspace
Ø Periodic subspaces are relaxations of BTT subspaces

Ø A (𝑘,𝑚, 𝑟, 𝑠) periodic evasive subspace is also a (𝑘,𝑚, 𝑟, 𝑠) BTT
evasive subspace

Ø However, this yields (𝑘,𝑚, 𝜀𝑚, 𝑠) BTT evasive subspace
only for 𝑘 = poly(1/𝜀) which is too small

𝑀1 0 0 0
𝑀2 𝑀1 0 0
𝑀3 𝑀2 𝑀1 0
𝑀4 𝑀3 𝑀2 𝑀1

𝑀1 0 0 0
? 𝑀1 0 0
? ? 𝑀1 0
? ? ? 𝑀1

BTT matrix periodic matrix

For 𝑘 ≤ 𝑞#('2/7), there exists an explicit (𝑘,𝑚, 𝑟, 𝑠)
periodic evasive subspace of codimension 𝑂(𝜀𝑘𝑚),
where 𝑠 = 𝑂(1/𝜀2)

Theorem: [Guruswami-Kopparty’13] (based on subspace designs)

Composition Lemma: [Guruswami-Xing’13]

Ø One can use [Guruswami-Kopparty’13] to construct an
outer subspace, so that it remains to construct an
inner subspace

Ø This reduces 𝑘 to 𝑘′ = 𝑂(log 𝑘), but increase 𝑠 to poly(𝑠)
Ø [Guruswami-Xing’13] applied composition 𝑂(log∗𝑛)

times

• List size 2+,-.(%/') M 2/!
"($%&∗()

Let 𝑊 be (𝑘,𝑚, 𝑟, 𝑠) periodic evasive
Let 𝑊′ be (𝑘′, 𝑘𝑚, 𝑠, 𝑠′) periodic evasive.
Then 𝑊 ∘𝑊3 ≔𝑊!⋂𝑊3 is (𝑘3𝑘,𝑚, 𝑟, 𝑠′) periodic evasive

Composition

inner subspace
outer subspace

Better Construction
Ideas:
Ø We observe that if 𝑊 is BTT evasive, then 𝑊 ∘𝑊3 is

also BTT evasive
Ø Apply composition twice to reduce 𝑘 to

𝑘′ = 𝑂(log log 𝑘)
Ø Use brute-force search to find a good non-explicit

inner BTT evasive subspace
Ø Existence of such a BTT evasive subspace follows

from the probabilistic method
• It is crucial to use BTT evasiveness — there are too many

period subspaces

Summary
Ø We first construct an AG code with subfield

evaluations
Ø Then we construct a BTT evasive subspace 𝑊 and

restrict the message space to 𝑊 to obtain the final
code

Ø 𝑊 is constructed using repeated composition of
periodic evasive subspaces [Guruswami-Kopparty’13]
and an inner subspace found by brute-force search

Ø The “repeated composition” structure also appears
elsewhere in coding theory and TCS
• Construction of asymptotically good codes
• First proof of the PCP theorem

Open Problems & Directions
Ø Reduce our list size 2+,-.(%/') to 𝑂(1/𝜀) or even

subexponential in 1/𝜀
• For explicit codes, best known bound is 1/𝜀 *(&/() for FRS codes

Ø For an absolute constant 𝑞, achieve the list decoding
capacity ℎ)8%(1 − 𝑅) over a 𝑞-ary alphabet

Ø Are our methods useful for constructing other
pseudorandom objects?
• E.g., lossless dimension expanders [Guruswami-Resch-Xing’18]?

