Efficient List-Decoding with

Constant Alphabet and List Sizes

Zeyu Guo
 University of Haifa

Joint work with Noga Ron-Zewi

Error-Correcting Codes

[Hamming, Shannon '40s]

Error-Correcting Codes

Code: $C: \Sigma^{k} \rightarrow \Sigma^{n}$, maps messages to codewords
$>$ Alphabet Σ, message length k, codeword length n
Rate: $R=\frac{k}{n} \sim$ redundancy in encoding

Minimum distance:
> For $x, y \in \Sigma^{n}$, the (relative) distance $\operatorname{dist}(x, y)$ is the fraction of coordinates where x and y differ
$>$ The (relative) minimum distance of C is

$$
\delta=\min (\operatorname{dist}(x, y): x, y \in C, x \neq y)
$$

Unique Decoding

Unique decoding:
$>$ Adversary corrupts p fraction of coordinates
$>$ Given $y \in \Sigma^{k}$, decoder finds the unique $x \in C$ such that $\operatorname{dist}(x, y) \leq p$
> Must have $p \leq \delta / 2$

List Decoding

List decoding [Elias, Wozencraft '50s]:

$>$ Adversary corrupts p fraction of coordinates
$>$ Given $y \in \Sigma^{k}$, decoder finds a short list of $x \in C$ such that $\operatorname{dist}(x, y) \leq p$ for every x in the list
$>$ Can correct more than $\delta / 2$ fraction of errors

Advantages of List Decoding

In coding theory:

> Bridge between Hamming Channel \& Shannon Channel
> Sometimes can use context / side information even if list size >1

In TCS:
Define the (relative) agreement $\operatorname{agr}(x, y)=1-\operatorname{dist}(x, y)$
For unique decoding, $\operatorname{dist}(x, y) \leq \delta / 2 \leq 1 / 2$
> Can recover x from y only if agr $(x, y) \geq 1 / 2$
For list decoding, can have dist (x, y) close to 1
> Can find a short list of candidates x from y even if $\operatorname{agr}(x, y)$ is small

Advantages of List Decoding

TCS apps:

1. Cryptography: Hard-core predicates [Goldreich-Levin'89]
2. Learning:
$>$ Boolean functions [Goldreich-Levin'89]
> Decision trees [Kushilevitz-Mansour'91]
> CNFs / DNFs [Jackson'94]
3. Complexity theory:
> Average-to-worst-case reductions
[Lipton'89, Cai-Pavan-Sivakumar'99, Goldreich-Rubinfeld-Sudan'99]
> Derandomization / Construction of PRGs
[Babai-Fortnow-Nisan-Wigderson'93, Sudan-Trevisan-Vadhan'99]

List Decodable Codes

$>$ Ideally, we want a code of rate R that is

- list decodable up to radius $\approx 1-R ~$ capacity
- with small list size and small alphabet size
- explicit and efficiently list decodable

List Decoding Capacity Theorem:

For $R, \varepsilon \in(0,1)$, there exist (non-explicit) codes of rate R that are list decodable up to radius $1-R-\varepsilon$ with list size $O(1 / \varepsilon)$ and alphabet size $2^{O(1 / \varepsilon)}$

Are there explicit capacity-achieving list decodable codes with similar parameters?

Reed-Solomon codes

> A Reed-Solomon code over F_{q} is given by the encoding map $F_{q}^{k} \rightarrow F_{q}^{n}$ defined by

$$
f \mapsto\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \cdots, f\left(\alpha_{n}\right)\right)
$$

where f is a univariate polynomial of degree $<k$ and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F_{q}$ are n distinct evaluation points
> Guruswami and Sudan proved that RS codes are efficiently list decodable up to radius $1-\sqrt{R}$ (known as the Johnson bound) [Sudan'97, Guruswami-Sudan'99]
> Most RS codes are list decodable beyond the Johnson bound [Rudra-Wootters'14, GLSTW'20]
> However, it is not known if RS codes can achieve the capacity $1-R$

Folded Reed-Solomon codes

> Folded Reed-Solomon codes [Guruswami-Rudra'05] are the first explicit codes that achieve the rate $1-R-\varepsilon$
$>$ It is obtained by combining $m=O\left(1 / \varepsilon^{2}\right)$ symbols into one

$$
f \mapsto\left(\begin{array}{ccc}
f\left(\alpha_{1}\right) & f\left(\alpha_{2}\right) & f\left(\alpha_{n}\right) \\
f\left(\gamma \alpha_{1}\right), & f\left(\gamma \alpha_{2}\right), \cdots, & f\left(\gamma \alpha_{n}\right) \\
f\left(\gamma^{2} \alpha_{1}\right) & f\left(\gamma^{2} \alpha_{2}\right) & f\left(\gamma^{2} \alpha_{n}\right)
\end{array}\right)
$$

\Rightarrow Alphabet size $n^{O\left(1 / \varepsilon^{2}\right)}$
$>$ List size $(1 / \varepsilon)^{O(1 / \varepsilon)}[$ Kopparty-Ron-Zewi-SarafWootters'18]

Other Constructions

> Subcodes of AG codes [Guruswami-Xing'13]

- Alphabet size $2^{\tilde{O}\left(1 / \varepsilon^{2}\right)}$
- List size $2^{\text {poly }(1 / \varepsilon)} \cdot 2^{2^{2^{O\left(\log ^{*} n\right)}}}$
> Multi-level concatenation of FRS codes + expanderbased amplification [Kopparty-Ron-Zewi-SarafWootters'18]
- Alphabet size $2^{\text {poly }(1 / \varepsilon)}$
- List size $2^{2^{2^{2^{O(1 / \varepsilon)}}}}$
- Encoding time $2^{\operatorname{poly}(1 / \varepsilon)} \cdot \operatorname{poly}(n)$

Our Result

There exist codes $C: \Sigma^{k} \rightarrow \Sigma^{n}$ of rate R that are list decodable up to radius $1-R-\varepsilon$ with list size $2^{\operatorname{poly}(1 / \varepsilon)}$ and alphabet size $2^{\tilde{\sigma}\left(1 / \varepsilon^{2}\right)}$. Moreover:

- The encoding time is $\operatorname{poly}(n, 1 / \varepsilon)$
- The list is contained in a subspace of dimension poly $(1 / \varepsilon)$, whose basis can be found in time $\operatorname{poly}(n, 1 / \varepsilon)$
- Outputting the list takes time $2^{\operatorname{poly}(1 / \varepsilon)} \cdot \operatorname{poly}(n)$
$>$ Our proof heavily depends on [Guruswami-Xing'13]. One key new idea is the use of BTT subspaces.

BTT matrix/subspace

$>$ A (k, m, r) block-triangular-Toeplitz (BTT) matrix over F is a $k m \times k r$ full rank matrix over F that is both block-lower-triangular and block-Toeplitz as a $k \times k$ block matrix

$$
k=4:\left[\begin{array}{cccc}
M_{1} & 0 & 0 & 0 \\
M_{2} & M_{1} & 0 & 0 \\
M_{3} & M_{2} & M_{1} & 0 \\
M_{4} & M_{3} & M_{2} & M_{1}
\end{array}\right]
$$

$>$ A subspace of $F^{k m}$ is a (k, m, r) BTT subspace if it is the image of $v \mapsto M v$

Overview of Our Construction

$>$ Let $\Sigma=F_{q}^{m}$ where $q=\operatorname{poly}(1 / \varepsilon)$ and $m=O\left(1 / \varepsilon^{2}\right)$

1) We first construct a list decodable code $C^{\prime}: \Sigma^{k} \rightarrow \Sigma^{n}$ such that the list of candidate messages is contained in a small BTT subspace of $\Sigma^{k} \cong F_{q}^{k m}$
2) Then we construct an explicit subspace $W \subseteq F_{q}^{k m}$ of low codimension that evades any BTT subspace
> The final code is obtained by restricting the message space of C^{\prime} to W, which reduces the list size to constant

RS code with subfield evaluations

> The code C^{\prime} is a "AG code with subfield evaluations" [Guruswami-Xing'13]
> We explain the idea using "RS codes with subfield evaluations"
$>$ An RS code over F_{q} is defined by the encoding map

$$
f \mapsto C_{f}:=\left(f\left(\alpha_{1}\right), f\left(\alpha_{2}\right), \cdots, f\left(\alpha_{n}\right)\right)
$$

where $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F_{q}$ are n distinct evaluation points
> An "RS code with subfield evaluations" is simply an RS code over an extension field $F_{q^{m}}$ with $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n} \in F_{q}$

Finding the BTT subspace

> Given y, we want to find a BTT subspace containing the list of all f satisfying $\operatorname{dist}\left(C_{f}, y\right) \leq 1-R-\varepsilon$
$>$ We can find a low degree multivariate polynomial $Q\left(Y_{1}, Y_{2}, \cdots, Y_{s}\right)$ over $F_{q^{m}}[X]$ such that

$$
Q^{*}(f):=Q\left(f, f^{q}, \cdots, f^{q^{s-1}}\right)=0
$$

$>$ As $Q^{*}(f) \in F_{q^{m}}[X]$, we get a collection of equations by equating the coefficients of $Q^{*}(f)$ with zero
$>$ This system of linear equations is represented by a BTT matrix M
$>$ So f is contained in $\operatorname{ker}(M)$ whose basis can be found efficiently
> Finally, we show that the kernel of a BTT matrix is a BTT subspace, so $\operatorname{ker}(M)$ is a BTT subspace

Algebraic-Geometric Codes

> For Reed-Solomon codes, we need $q \geq n$ to get n evaluation points
> To make the alphabet size independent of n, we use AG codes (with subfield evaluations)
> AG codes are generalizations of Reed-Solomon codes, where lines are generalized by algebraic curves
$>$ Can have arbitrarily many \# evaluation points over F_{q} for fixed q by using more and more complicated algebraic curves
> We use explicit curves from the Garcia-Stichtenoth tower [Garcia-Stichtenoth'96], following [GuruswamiXing'13]

Algebraic-Geometric Codes

> Two properties used for RS codes:

1) Let V be the space of degree- d polynomials. Then any nonzero $f \in V$ has at most d zeros
2) Dimension of V is $d+1$
> They are generalized for AG codes
3) There is an analogous space V for "degree- d polynomials" (called a Riemann-Roch space), and any nonzero $f \in V$ has at most d zeros
4) Dimension of V is in $[d-g+1, d+1]$, where $g \geq 0$ is called the genus
$>$ In the GS tower, there is a good upper bound for g

BTT Evasive Subspace

> $\mathrm{A}(k, m, r, s) \mathrm{B} T \mathrm{~T}$ evasive subspace is a subspace $W \subseteq F_{q}^{k m}$ such that for any (k, m, r) BTT subspace V,

$$
\operatorname{dim}(V \cap W) \leq s
$$

Theorem: [GR'20]
There exists an explicit ($k, m, \varepsilon m, s$) BTT evasive subspace $W \subseteq F_{q}^{k m}$ of codimension $O(\varepsilon k m)$, where $s=\operatorname{poly}(1 / \varepsilon)$
$>$ Restricting the message space $\Sigma^{k} \cong F_{q}^{k m}$ to W reduces the list size to $q^{s}=2^{\tilde{O}\left(1 / \varepsilon^{2}\right)}$, and yields the desired code

Periodic Subspace

> Periodic subspaces are relaxations of BTT subspaces

$$
\left[\begin{array}{cccc}
M_{1} & 0 & 0 & 0 \\
M_{2} & M_{1} & 0 & 0 \\
M_{3} & M_{2} & M_{1} & 0 \\
M_{4} & M_{3} & M_{2} & M_{1}
\end{array}\right] \quad\left[\begin{array}{cccc}
M_{1} & 0 & 0 & 0 \\
? & M_{1} & 0 & 0 \\
? & ? & M_{1} & 0 \\
? & ? & ? & M_{1}
\end{array}\right]
$$

\Rightarrow A (k, m, r, s) periodic evasive subspace is also a (k, m, r, s) BTT evasive subspace
Theorem: [Guruswami-Kopparty'13] (based on subspace designs)
For $k \leq q^{0(\varepsilon m / r)}$, there exists an explicit (k, m, r, s) periodic evasive subspace of codimension $O(\varepsilon k m)$, where $s=O\left(1 / \varepsilon^{2}\right)$
> However, this yields ($k, m, \varepsilon m, s$) BTT evasive subspace only for $k=\operatorname{poly}(1 / \varepsilon)$ which is too small

Composition

Composition Lemma: [Guruswami-Xing'13]

Let W be (k, m, r, s) periodic evasive inner subspace Let W^{\prime} be ($k^{\prime}, k m, s, s^{\prime}$) periodic evasive. outer subspace Then $W \circ W^{\prime}:=W^{k} \cap W^{\prime}$ is ($k^{\prime} k, m, r, s^{\prime}$) periodic evasive
> One can use [Guruswami-Kopparty'13] to construct an outer subspace, so that it remains to construct an inner subspace
$>$ This reduces k to $k^{\prime}=O(\log k)$, but increase s to poly (s)
$>$ [Guruswami-Xing'13] applied composition $O\left(\log ^{*} n\right)$ times

- List size $2^{\text {poly }(1 / \varepsilon)} \cdot 2^{2^{20\left(\log ^{*} n\right)}}$

Better Construction

Ideas:

$>$ We observe that if W is BTT evasive, then $W \circ W^{\prime}$ is also BTT evasive
> Apply composition twice to reduce k to

$$
k^{\prime}=O(\log \log k)
$$

$>$ Use brute-force search to find a good non-explicit inner BTT evasive subspace
> Existence of such a BTT evasive subspace follows from the probabilistic method

- It is crucial to use BTT evasiveness - there are too many period subspaces

Summary

> We first construct an AG code with subfield evaluations
> Then we construct a BTT evasive subspace W and restrict the message space to W to obtain the final code
$>W$ is constructed using repeated composition of periodic evasive subspaces [Guruswami-Kopparty'13] and an inner subspace found by brute-force search
$>$ The "repeated composition" structure also appears elsewhere in coding theory and TCS

- Construction of asymptotically good codes
- First proof of the PCP theorem

Open Problems \& Directions

$>$ Reduce our list size $2^{\text {poly }(1 / \varepsilon)}$ to $O(1 / \varepsilon)$ or even subexponential in $1 / \varepsilon$

- For explicit codes, best known bound is $(1 / \varepsilon)^{O(1 / \varepsilon)}$ for FRS codes
$>$ For an absolute constant q, achieve the list decoding capacity $h_{q}^{-1}(1-R)$ over a q-ary alphabet
- Are our methods useful for constructing other pseudorandom objects?
- E.g., lossless dimension expanders [Guruswami-Resch-Xing'1 8]?

