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Error-Correcting Codes

Code: C:¥ - £™ maps messages to codewords

> Alphabet X, message length k, codeword length n

Rate: R = %~ redundancy in encoding
Minimum distance:

» For x,y € X", the (relative) distance dist(x, y) is the
fraction of coordinates where x and y differ

> The (relative) minimum distance of C is
6 = min(dist(x,y):x,y €C,x #y)



Unique Decoding

Unique decoding:
» Adversary corrupts p fraction of coordinates

> Given y € 3k, decoder finds the unique x € C such
that dist(x, y) <p

» Must have p < §/2




List Decoding

List decoding
» Adversary corrupts p fraction of coordinates

» Given y € Xk, decoder finds a short list of x € C such
that dist(x, y) < p for every x in the list

» Can correct more than /2 fraction of errors




Advantages of List Decoding

In coding theory:

» Bridge between Hamming Channel & Shannon Channel

> Sometimes can use context / side information even if
list size >1

In TCS:
Define the (relative) agreement agr(x,y) = 1 — dist(x, y)

For unique decoding, dist(x,y) <6/2<1/2
» Can recover x from y only if agr(x,y) > 1/2

For list decoding, can have dist(x,y) close to 1
» Can find a short list of candidates x from y even if agr(x, y) is small



Advantages of List Decoding

TCS apps:
1. Cryptography: Hard-core predicates

2. Learning:

> Boolean functions
» Decision trees
> CNFs / DNFs

3. Complexity theory:
» Average-to-worst-case reductions

> Derandomization / Construction of PRGs



List Decodable Codes

> ldeally, we want a code of rate R that i?/{ List decoding }

« list decodable up to radius =1 —R capacity
« with small list size and small alphabet size
« explicit and efficiently list decodable

List Decoding Capacity Theorem:

For R, € (0,1), there exist (non-explicit) codes of
rate R that are list decodable up to radius 1 — R — ¢
with list size 0(1/¢) and alphabet size 2001/8)

Are there explicit capacity-achieving list decodable
codes with similar parameters?



Reed-Solomon codes

> A Reed-Solomon code over F, is given by the encoding
map F— FJ' defined by

fe (Flay, flaz), -, f(ay)
where f is a univariate polynomial of degree < k and
a,, @y, a, € F, are n distinct evaluation points

» Guruswami and Sudan proved that RS codes are efficiently

list decodable up to radius 1 —+/R (known as the Johnson
bound)

> Most RS codes are list decodable beyond the Johnson
bound G

> However, it is not known if RS codes can achieve the
capacity 1 — R



Folded Reed-Solomon codes

> Folded Reed-Solomon codes are
the first explicit codes that achieve therate 1 — R — ¢

> It is obtained by combining m = 0(1/¢%) symbols into one

fla) f(ay) f(a,)
fr (f()/%), fray), -, f(yan)>
fréay) f(reay) f(ra,)
> Alphabet size n0(1/&)
> List size (1/£)01/9)



Other Constructions

> Subcodes of AG codes
. Alphabet size 20(1/¢)

° LiSt Size 2p01y<1/8) ) 2220(10g*n)

> Multi-level concatenation of FRS codes + expander-
based amplification

« Alphabet size 2roly(1/¢)

0(1/¢)
e Listsize 2222

« Encoding time 2P°y(1/8) . poly(n)



Our Result

There exist codes C: 2 — =" of rate R that are list

decodable up to radius 1 — R — ¢ with list size 2P°oly(1/€)

and alphabet size 20(1/¢) Moreover:

« The encoding time is poly(n,1/¢)

« The list is contained in a subspace of dimension poly(1/¢),
whose basis can be found in time poly(n,1/¢)

 Outputting the list takes time 2P°V(1/€) . noly(n)

> Our proof heavily depends on
One key new idea is the use of BTT subspaces.



BTT matrix/subspace

> A (k,m,r) block-triangular-Toeplitz (BTT) matrix
over F is a kmxkr full rank matrix over F that is
both block-lower-triangular and block-Toeplitz
as a kxk block matrix

— —_—

M, M; M, M,

> A subspace of Fim is a (k,m,r) BTT subspace if it
is the image of v » Mv



Overview of Our Construction

> Let ¥ = FJ" where g = poly(1/¢) and m = 0(1/&?)
1) We first construct a list decodable code ¢': 2k — x"

such that the list of candidate messages is contained
in a small BTT subspace of 2% = F™

2) Then we construct an explicit subspace W c Fq"m of
low codimension that evades any BTT subspace

» The final code is obtained by restricting the message
space of C’' to W, which reduces the list size to
constant



RS code with subfield evaluations

> The code ¢’ is a “AC code with subfield evaluations”

> We explain the idea using “RS codes with subfield
evaluations”

> An RS code over F; is defined by the encoding map
fe = ((a) f(az), -, f(am))
where ay, a,, -+, a, € F; are n distinct evaluation points

> An “RS code with subfield evaluations” is simply an RS
code over an extension field Fym with ay, a,, -+, a, € F,



Finding the BTT subspace

» Given y, we want to find a BTT subspace containing
the list of all f satisfying dist(Cr,y) <1—R —¢

» We can find a low degree multivariate polynomial
Q(Yy, Yy, Y,) over Fom[X] such that
Q" (N:=Q(f.f fT) =0

> As Q" (f) € Fym [X], we get a collection of equations
by equating the coefficients of Q*(f) with zero

> This system of linear equations is represented by a
BTT matrix M

» So f is contained in ker(M) whose basis can be found
efficiently

> Finally, we show that the kernel of a BTT matrix is a
BTT subspace, so ker(M) is a BTT subspace



Algebraic-Geometric Codes

» For Reed-Solomon codes, we need g > nto
get n evaluation points

> To make the alphabet size independent of n, we use
AG codes (with subfield evaluations)

» AG codes are generalizations of Reed-Solomon codes,
where lines are generalized by algebraic curves

» Can have arbitrarily many # evaluation points over F,
for fixed g by using more and more complicated
algebraic curves

> We use explicit curves from the Garcia-Stichtenoth
tower , following



Algebraic-Geometric Codes

> Two properties used for RS codes:

1) Let V be the space of degree-d polynomials. Then
any nonzero f € V has at most d zeros

2) Dimensionof Visd+1
» They are generalized for AG codes

1) There is an analogous space VV for “degree-d
polynomials” (called a Riemann-Roch space), and

any nonzero f € V has at most d zeros

2) Dimensionof Visin|[d—-g+1,d + 1], where g =0
is called the genus

> In the GS tower, there is a good upper bound for g



BTT Evasive Subspace

> A (k,m,r,s) BTT evasive subspace is a subspace W < F™
such that for any (k,m,r) BTT subspace V,

dim(VAW) < s

Theorem: [GR’20

There exists an explicit (k,m,em,s) BTT evasive
subspace W < F™ of codimension 0(skm), where

s = poly(1/¢)

» Restricting the message space £¥ = F™ to W reduces
the list size to g5 = 20(1/¢) and yields the desired code



Periodic Subspace

> Periodic subspaces are relaxations of BTT subspaces

M, 0 0
M, M4 0
M, M, M,
M, M; M,

~ BTT matrix

evasive subspace
Theorem:

0
0
0

M,

? M, 0
? ? M, 0
? ? ? M,

periodic matrix

> A (k,m,r,s) periodic evasive subspace is also a (k,m,r,s) BTT

(based on subspace designs)

For k < g0™/7) there exists an explicit (k,m,1,s)
periodic evasive subspace of codimension 0(ckm),
where s = 0(1/¢?)

» However, this yields (k,m,em,s) BTT evasive subspace

only for k = poly(1/¢) which is too small




Composition

Composition Lemma:

Let W be (k,m,r,s) periodic evasive inner subspace
Let W' be (k',km,s,s") periodic evasive. outer subspace
Then W oW’ :=wWrkNW' is (k'k,m,r,s") periodic evasive

> One can use to construct an
outer subspace, so that it remains to construct an
inner subspace

» This reduces k to k' = O(logk), but increase s to poly(s)
applied composition 0(log*n)
times

e List size 2poly(1/e) . 2220(10g n)



Better Construction

|deas:

> We observe that if W is BTT evasive, then W o W' is
also BTT evasive

> Apply composition twice to reduce k to
k' = 0(loglog k)
» Use brute-force search to find a good non-explicit
inner BTT evasive subspace
> Existence of such a BTT evasive subspace follows
from the probabilistic method

It is crucial to use BTT evasiveness — there are too many
period subspaces



Summary

> We first construct an AG code with subfield
evaluations

> Then we construct a BTT evasive subspace W and
restrict the message space to W to obtain the final
code

» W is constructed using repeated composition of
periodic evasive subspaces
and an inner subspace found by brute-force search

> The “repeated composition” structure also appears
elsewhere in coding theory and TCS

« Construction of asymptotically good codes
« First proof of the PCP theorem



Open Problems & Directions

> Reduce our list size 2P°V(1/€) to 0(1/¢) or even
subexponential in 1/¢

« For explicit codes, best known bound is (1/¢)?0(/8 for FRS codes

» For an absolute constant g, achieve the list decoding
capacity h;'(1 — R) over a g-ary alphabet

> Are our methods useful for constructing other
pseudorandom objects?

 E.g., lossless dimension expanders ?




