Efficient List-Decoding with Constant Alphabet and List Sizes

Zeyu Guo University of Haifa

Joint work with Noga Ron-Zewi

Error-Correcting Codes

[Hamming, Shannon '40s]

Error-Correcting Codes

Code: $C: \Sigma^k \to \Sigma^n$, maps messages to codewords

> Alphabet Σ , message length k, codeword length n

Rate:
$$R = \frac{k}{n} \sim$$
 redundancy in encoding

Minimum distance:

For $x, y \in \Sigma^n$, the (relative) distance dist(x, y) is the fraction of coordinates where x and y differ

> The (relative) minimum distance of C is

 $\delta = \min(\operatorname{dist}(x, y) \colon x, y \in C, x \neq y)$

Unique Decoding

Unique decoding:

- \succ Adversary corrupts p fraction of coordinates
- Siven $y \in \Sigma^k$, decoder finds the unique $x \in C$ such that $dist(x, y) \le p$
- > Must have $p \leq \delta/2$

List Decoding

List decoding [Elias, Wozencraft '50s]:

- Adversary corrupts p fraction of coordinates
- ➢ Given y ∈ Σ^k, decoder finds a short list of x ∈ C such that dist(x, y) ≤ p for every x in the list
- > Can correct more than $\delta/2$ fraction of errors

Advantages of List Decoding

In coding theory:

- Bridge between Hamming Channel & Shannon Channel
- Sometimes can use context / side information even if list size >1

In TCS:

- Define the (relative) agreement agr(x, y) = 1 dist(x, y)
- For unique decoding, $dist(x, y) \le \delta/2 \le 1/2$
- > Can recover x from y only if $agr(x, y) \ge 1/2$
- For list decoding, can have dist(x, y) close to 1
- > Can find a short list of candidates x from y even if agr(x, y) is small

Advantages of List Decoding

TCS apps:

- 1. Cryptography: Hard-core predicates [Goldreich-Levin'89]
- 2. Learning:
 - Boolean functions [Goldreich-Levin'89]
 - Decision trees [Kushilevitz-Mansour'91]
 - CNFs / DNFs [Jackson'94]
- 3. Complexity theory:

Average-to-worst-case reductions [Lipton'89, Cai-Pavan-Sivakumar'99, Goldreich-Rubinfeld-Sudan'99]

Derandomization / Construction of PRGs [Babai-Fortnow-Nisan-Wigderson'93, Sudan-Trevisan-Vadhan'99]

List Decodable Codes

List decoding

capacity

 \succ Ideally, we want a code of rate *R* that is

- list decodable up to radius $\approx 1 R$
- with small list size and small alphabet size
- explicit and efficiently list decodable

List Decoding Capacity Theorem:

For $R, \varepsilon \in (0,1)$, there exist *(non-explicit)* codes of rate R that are list decodable up to radius $1 - R - \varepsilon$ with list size $O(1/\varepsilon)$ and alphabet size $2^{O(1/\varepsilon)}$

Are there explicit capacity-achieving list decodable codes with similar parameters?

Reed–Solomon codes

➤ A Reed-Solomon code over F_q is given by the encoding map $F_q^k \rightarrow F_q^n$ defined by

 $f \mapsto (f(\alpha_1), f(\alpha_2), \cdots, f(\alpha_n))$

where *f* is a univariate polynomial of degree < k and $\alpha_1, \alpha_2, \cdots, \alpha_n \in F_q$ are *n* distinct evaluation points

- Subscription Guruswami and Sudan proved that RS codes are efficiently list decodable up to radius $1 \sqrt{R}$ (known as the Johnson bound) [Sudan'97, Guruswami-Sudan'99]
- Most RS codes are list decodable beyond the Johnson bound [Rudra-Wootters'14, GLSTW'20]
- > However, it is not known if RS codes can achieve the capacity 1 R

Folded Reed–Solomon codes

- > Folded Reed-Solomon codes [Guruswami-Rudra'05] are the first explicit codes that achieve the rate $1 - R - \varepsilon$
- > It is obtained by combining $m = O(1/\epsilon^2)$ symbols into one

$$f \mapsto \begin{pmatrix} f(\alpha_1) & f(\alpha_2) & f(\alpha_n) \\ f(\gamma \alpha_1) & f(\gamma \alpha_2) & \cdots & f(\gamma \alpha_n) \\ f(\gamma^2 \alpha_1) & f(\gamma^2 \alpha_2) & f(\gamma^2 \alpha_n) \end{pmatrix}$$

- > Alphabet size $n^{O(1/\epsilon^2)}$
- List size (1/ε)^{0(1/ε)} [Kopparty-Ron-Zewi-Saraf-Wootters'18]

Other Constructions

- Subcodes of AG codes [Guruswami-Xing'13]
 - Alphabet size $2^{\tilde{O}(1/\epsilon^2)}$
 - List size $2^{\operatorname{poly}(1/\varepsilon)} \cdot 2^{2^{2^{O(\log^* n)}}}$
- Multi-level concatenation of FRS codes + expanderbased amplification [Kopparty-Ron-Zewi-Saraf-Wootters'18]
 - Alphabet size 2^{poly(1/ε)}
 - List size $2^{2^{2^{0}(1/\varepsilon)}}$
 - Encoding time $2^{\text{poly}(1/\varepsilon)} \cdot \text{poly}(n)$

Our Result

There exist codes $C: \Sigma^k \to \Sigma^n$ of rate R that are list decodable up to radius $1 - R - \varepsilon$ with list size $2^{\text{poly}(1/\varepsilon)}$ and alphabet size $2^{\tilde{O}(1/\varepsilon^2)}$. Moreover:

- The encoding time is $poly(n, 1/\varepsilon)$
- The list is contained in a subspace of dimension $poly(1/\epsilon)$, whose basis can be found in time $poly(n, 1/\epsilon)$
- Outputting the list takes time $2^{\text{poly}(1/\varepsilon)} \cdot \text{poly}(n)$
- Our proof heavily depends on [Guruswami-Xing'13].
 One key new idea is the use of BTT subspaces.

BTT matrix/subspace

A (k,m,r) block-triangular-Toeplitz (BTT) matrix over F is a km×kr full rank matrix over F that is both block-lower-triangular and block-Toeplitz as a k×k block matrix

$$k = 4: \begin{bmatrix} M_1 & 0 & 0 & 0 \\ M_2 & M_1 & 0 & 0 \\ M_3 & M_2 & M_1 & 0 \\ M_4 & M_3 & M_2 & M_1 \end{bmatrix}$$

> A subspace of F^{km} is a (k, m, r) BTT subspace if it is the image of $v \mapsto Mv$

Overview of Our Construction

- \succ Let $\Sigma = F_q^m$ where $q = \text{poly}(1/\varepsilon)$ and $m = O(1/\varepsilon^2)$
- 1) We first construct a list decodable code $C': \Sigma^k \to \Sigma^n$ such that the list of candidate messages is contained in a small BTT subspace of $\Sigma^k \cong F_q^{km}$
- 2) Then we construct an explicit subspace $W \subseteq F_q^{km}$ of low codimension that evades any BTT subspace
- The final code is obtained by restricting the message space of C' to W, which reduces the list size to constant

RS code with subfield evaluations

- The code C' is a "AG code with subfield evaluations" [Guruswami-Xing'13]
- We explain the idea using "RS codes with subfield evaluations"
- ➤ An RS code over F_q is defined by the encoding map $f \mapsto C_f := (f(\alpha_1), f(\alpha_2), \cdots, f(\alpha_n))$

where $\alpha_1, \alpha_2, \dots, \alpha_n \in F_q$ are *n* distinct evaluation points

➤ An "RS code with subfield evaluations" is simply an RS code over an extension field F_{q^m} with $\alpha_1, \alpha_2, \cdots, \alpha_n \in F_q$

Finding the BTT subspace

- > Given y, we want to find a BTT subspace containing the list of all f satisfying $dist(C_f, y) ≤ 1 - R - \varepsilon$
- > We can find a low degree multivariate polynomial $Q(Y_1, Y_2, \dots, Y_s)$ over $F_{q^m}[X]$ such that

 $Q^*(f) := Q(f, f^q, \cdots, f^{q^{s-1}}) = 0$

- ➢ As $Q^*(f) \in F_{q^m}[X]$, we get a collection of equations by equating the coefficients of $Q^*(f)$ with zero
- This system of linear equations is represented by a BTT matrix M
- So f is contained in ker(M) whose basis can be found efficiently
- Finally, we show that the kernel of a BTT matrix is a BTT subspace, so ker(M) is a BTT subspace

Algebraic-Geometric Codes

- > For Reed-Solomon codes, we need $q \ge n$ to get n evaluation points
- To make the alphabet size independent of n, we use AG codes (with subfield evaluations)
- AG codes are generalizations of Reed-Solomon codes, where lines are generalized by algebraic curves
- Can have arbitrarily many # evaluation points over Fq for fixed q by using more and more complicated algebraic curves
- We use explicit curves from the Garcia-Stichtenoth tower [Garcia-Stichtenoth'96], following [Guruswami-Xing'13]

Algebraic-Geometric Codes

- > Two properties used for RS codes:
 - 1) Let V be the space of degree-d polynomials. Then any nonzero $f \in V$ has at most d zeros
 - 2) Dimension of *V* is d + 1
- > They are generalized for AG codes
 - 1) There is an analogous space V for "degree–d polynomials" (called a Riemann–Roch space), and any nonzero $f \in V$ has at most d zeros
 - 2) Dimension of V is in [d g + 1, d + 1], where $g \ge 0$ is called the genus
- \succ In the GS tower, there is a good upper bound for g

BTT Evasive Subspace

➤ A (k,m,r,s) BTT evasive subspace is a subspace W ⊆ F_q^{km} such that for any (k,m,r) BTT subspace V, $dim(V \cap W) \leq s$

Theorem: [GR'20]

There exists an explicit $(k, m, \varepsilon m, s)$ BTT evasive subspace $W \subseteq F_q^{km}$ of codimension $O(\varepsilon km)$, where $s = poly(1/\varepsilon)$

► Restricting the message space $\Sigma^k \cong F_q^{km}$ to *W* reduces the list size to $q^s = 2^{\tilde{O}(1/\epsilon^2)}$, and yields the desired code

Periodic Subspace

Periodic subspaces are relaxations of BTT subspaces

M_1	0	0	0		$\int M_1$	0	0	0
M_2	M_1	0	0		?	M_1	0	0
M_3	M_2	M_1	0		?	?	M_1	0
M_4	M_3	M_2	M_1		?	?	?	M_1
BTT matrix					periodic matrix			

> A (k, m, r, s) periodic evasive subspace is also a (k, m, r, s) BTT evasive subspace

Theorem: [Guruswami-Kopparty'13] (based on subspace designs)

For $k \leq q^{O(\epsilon m/r)}$, there exists an explicit (k, m, r, s)periodic evasive subspace of codimension $O(\epsilon km)$, where $s = O(1/\epsilon^2)$

> However, this yields $(k, m, \varepsilon m, s)$ BTT evasive subspace only for $k = poly(1/\varepsilon)$ which is too small

Composition

Composition Lemma: [Guruswami-Xing'13]

Let W be (k, m, r, s) periodic evasive inner subspace Let W' be (k', km, s, s') periodic evasive. outer subspace Then $W \circ W' \coloneqq W^k \cap W'$ is (k'k, m, r, s') periodic evasive

- One can use [Guruswami-Kopparty'13] to construct an outer subspace, so that it remains to construct an inner subspace
- > This reduces k to $k' = O(\log k)$, but increase s to poly(s)
- [Guruswami-Xing'13] applied composition O(log*n) times
 - List size $2^{\operatorname{poly}(1/\varepsilon)} \cdot 2^{2^{2^{O(\log^* n)}}}$

Better Construction

Ideas:

- We observe that if W is BTT evasive, then W W' is also BTT evasive
- > Apply composition twice to reduce k to

 $k' = O(\log \log k)$

- Use brute-force search to find a good non-explicit inner BTT evasive subspace
- Existence of such a BTT evasive subspace follows from the probabilistic method
 - It is crucial to use BTT evasiveness there are too many period subspaces

Summary

- We first construct an AG code with subfield evaluations
- Then we construct a BTT evasive subspace W and restrict the message space to W to obtain the final code
- W is constructed using repeated composition of periodic evasive subspaces [Guruswami-Kopparty'13] and an inner subspace found by brute-force search
- The "repeated composition" structure also appears elsewhere in coding theory and TCS
 - Construction of asymptotically good codes
 - First proof of the PCP theorem

Open Problems & Directions

- > Reduce our list size $2^{\text{poly}(1/\epsilon)}$ to $O(1/\epsilon)$ or even subexponential in $1/\epsilon$
 - For explicit codes, best known bound is $(1/\epsilon)^{O(1/\epsilon)}$ for FRS codes
- > For an absolute constant q, achieve the list decoding capacity $h_q^{-1}(1-R)$ over a q-ary alphabet
- Are our methods useful for constructing other pseudorandom objects?
 - E.g., lossless dimension expanders [Guruswami-Resch-Xing'18]?

