Analysis of Two-variable Recurrence Relations with Application to Parameterized Approximations Ariel Kulik, Technion

Joint work with Hadas Shachnai

Technion Theory Seminar, Nov 2020

Introduction (long)

山
 Our Results

Recurrence Relations

A Faster Algorithm

Summary and Discussion

Introduction

Vertex Cover (VC)

- An undirected graph $G=(V, E)$

$S \subseteq V$ is a cover if: $\forall(u, v) \in E \rightarrow S \cap\{u, v\} \neq \varnothing$
- Decision problem: k -Vertex Cover Decide if G has a cover S with $|S| \leq \mathrm{k}$
- Optimization:
find a cover S of G such that $|S|$ is minimal
- NP-hard

Approximation

- Find a non-optimal solution in polynomial time.
- A simple polynomial time 2-approximation
- If G has a cover of size k
- Finds a vertex cover S with $|S| \leq 2 k$
- No (2- ε)-approximation under UGC

Parameterization

- Associate an instance with a parameter k
- Language $L \subseteq \Sigma^{*}$
- Paramterization $k=\kappa(I)$ for all $I \in \Sigma^{*}$
- Parameterized Algorithm:
- Decide if $I \in L$
- In time $O(f(k) \cdot \operatorname{poly}(n))=0^{*}(f(k))$
- $|I|=n, k=\kappa(I)$
- Special class of non-polynomial algorithms

Parameterized Vertex Cover

- k -Vertex Cover:
- Input G and k
- Decide if G has a cover S with $|S| \leq \mathrm{k}$
- Standard parameterization $\kappa(G, k)=k$
- A paramaterized $O^{*}\left(1.273^{k}\right)$ algorithm
- No $2^{o(k)}$ algorithm under ETH

Parameterized Approximation

- $\alpha \in[1,2]$.
- An algorithm is a parameterized α-approximation for Vertex Cover:
- If G has a vertex cover of size k
\rightarrow Returns a vertex cover of size αk
- Running time $O(f(k) \cdot \operatorname{poly}(n))$
- Goal: Tradeoff

Increase $\alpha \rightarrow$ Reduce the running time

Previous Results

- A parameterized α-approximation with running time $O^{*}\left(\left(1.2378^{2-\alpha}\right)^{k}\right)$ [Fellows, K, Rosamond, Shachnai] [Bourgeois, Escoffier, Paschos]
- A parameterized 1.5-approximation in $O^{*}\left(1.0883^{k}\right)$ [Brankovic, Fernau]

A simple Algorithm for VC

$\operatorname{VC2}(G, k)$

1. If $k<0$ return FALSE
2. If $E=\varnothing$ return TRUE
3. Pick an edge $\{u, v\}$: Return $\operatorname{VC2}(G \backslash u, k-1)$

$$
\text { or } \operatorname{VC2}(G \backslash v, k-1)
$$

- An $O^{*}\left(2^{k}\right)$ algorithm

Branching

Approximate Solutions

- Pick an edge $\{u, v\}$
- Branch over:
- u is in the cover
- v is in the cover $k+1=3$
- Repeat $k+1$ times
- Doubled the number of leaves

- $k+2$ "good" leaves

Randomization

- Pick an edge $\{u, v\}$
- With Prob. 0.5

Add u to the cover
Else
Add v to the cover

- Repeat $\alpha \cdot k$ times

- What is the probability a cover is found?

Analysis

- Let X_{n} be a random indicator:

Pick an edge $\{u, v\}$ With Prob. 0.5

Add u to the cover Else

Add v to the cover Repeat $\alpha \cdot k$ times

- $X_{n}=1$ the n-th selected vertex reduced the minimal cover size by 1 (or, a cover was already found)
- Otherwise $X_{n}=0$
- $\operatorname{Pr}\left(X_{n}=1 \mid X_{1}, \ldots, X_{n-1}\right) \geq \frac{1}{2}$
$\operatorname{Pr}($ Found a cover $) \geq \operatorname{Pr}\left(X_{1}+\cdots+X_{\alpha k} \geq k\right)$

$$
\geq \operatorname{Pr}\left(\operatorname{Binomial}\left(\alpha k, \frac{1}{2}\right) \geq k\right)
$$

Analysis- cont'd

$$
\begin{aligned}
& \operatorname{Pr}(\text { Found a cover }) \geq \operatorname{Pr}\left(\operatorname{Binomial}\left(\alpha k, \frac{1}{2}\right) \geq k\right) \\
& \quad \geq \frac{1}{(\alpha k+1)^{2}} \exp \left(\alpha D\left(\frac{1}{\alpha} \| \frac{1}{2}\right)\right)^{-k} \\
& \quad=\frac{1}{(\alpha k+1)^{2}}\left(c_{\alpha} x^{-k}\right.
\end{aligned}
$$

Standard tail bound.
D is the Kullback-Leibler Divergenı

$$
D(a \| b)=a \log \left(\frac{a}{b}\right)+(1-
$$

Commonly dervied
the Method of Types.

Parameterized Approximation

Run the algorithm:

```
Pick an edge {u,v}
With Prob. 0.5
    Addu to the cover
Else
    Addv to the cover
Repeat }\alpha\cdotk\mathrm{ times
```

$(\alpha k+1)^{2}\left(c_{\alpha}\right)^{k}$ times

The graph has a cover of size k
\rightarrow With constant probability the algorithm finds a cover of size αk

Running Times

- For $\alpha=1.5$ the running time is $O^{*}\left(1.0887^{k}\right)$
- Nearly matches the current best result

Faster Algorithm

- An $O^{*}\left(1.46^{k}\right)$ algorithm for VC:

If there is $v \in V, \operatorname{deg}(v) \geq 3$ branch over: - v is in the cover - $N(v)$ is in the cover

Otherwise, $\max \operatorname{deg}(v) \leq 2$, find a minimum vertex cover

Running time: $p(k)=p(k-1)+p(k-3)$

Faster Randomized Algorithm

Fix $\gamma \in(0,1)$.
$V C 3_{\gamma}(G)$
If there is $v \in V, \operatorname{deg}(v) \geq 3$:
With probability γ
Add v to the cover
With probability $1-\gamma$
Select $S \subseteq N(v),|S|=3$
Add S to the cover
Otherwise, maxdeg(v) ≤ 2, find a minimum vertex cover

Success Probability

```
If there is v\inV, deg(v)\geq3:
    With probability }\gamma\mathrm{ :
        Add v to the
        cover.
```

 With probability \(1-\gamma\) :
 Select \(S \subseteq N(v),|S|=3\)
 Add \(S\) to the cover.
 What is the probabiliy the algorithm returns a cover of size αk ?

- $\mathrm{P}(b, k)$ - the minimal probabiliy:
- The algorithm returns a cover of size b - budget
- Given a graph with cover of size k - parameter

Then $\mathrm{P}(b, k) \geq p(b, k)$

Success Probability- cont'd

$$
\begin{aligned}
& p(b, k)=\min \left\{\begin{array}{l}
\gamma \cdot p(b-1, k-1)+(1-\gamma) \cdot p(b-3, k) \\
\gamma \cdot p(b-1, k)+(1-\gamma) \cdot p(b-3, k-3)
\end{array}\right. \\
& p(b, k)=0 \text { for } \mathrm{b}<0 \text { and } p(b, 0)=1 \text { for } b \geq 0 .
\end{aligned}
$$

- $p(b, k)$ can be computed using dynamic progrmming
\rightarrow Run the algorithm $\frac{1}{p(\alpha k, k)}$ times
$\rightarrow \alpha$-approximation
- We want to find c such that $p(\alpha k, k) \approx c^{-k}$

$$
\lim _{k \rightarrow \infty} \frac{1}{k} \log (p(\alpha k, k))=?
$$

Our Results

Our results- Highlights

- A solution for a wide familiy of recurrence relations, generalizing:

$$
\begin{aligned}
& p(b, k)=\min \left\{\begin{array}{l}
\gamma \cdot p(b-1, k-1)+(1-\gamma) \cdot p(b-3, k) \\
\gamma \cdot p(b-1, k)+(1-\gamma) \cdot p(b-3, k-3)
\end{array}\right. \\
& p(b, k)=0 \text { for } b<0 \text { and } p(b, 0)=1 \text { for } b \geq 0 .
\end{aligned}
$$

- Parameterized approximation algorithms for:
- Vertex Cover
- 3-Hitting Set

Significant improvement of the running times.

Generalizing The Reccurence

$$
\begin{gathered}
p(b, k)=\min \left\{\begin{array}{l}
\gamma \cdot p(b-1, k-1)+(1-\gamma) \cdot p(b-3, k) \\
\gamma \cdot p(b-1, k)+(1-\gamma) \cdot p(b-3, k-3)
\end{array}\right. \\
=\min \left\{\begin{array}{l}
\bar{\gamma}_{1}^{1} \cdot p\left(b-\bar{b}_{1}^{1}, k-\bar{k}_{1}^{1}\right)+\bar{\gamma}_{2}^{1} \cdot p\left(b-\bar{b}_{2}^{1}, k-\bar{k}_{2}^{1}\right) \\
\bar{\gamma}_{1}^{2} \cdot p\left(b-\bar{b}_{1}^{2}, k-\bar{k}_{1}^{2}\right)+\bar{\gamma}_{2}^{2} \cdot p\left(b-\bar{b}_{2}^{2}, k-\bar{k}_{2}^{2}\right)
\end{array}\right. \\
=\min \left\{\sum_{i=1}^{r_{1}} \bar{\gamma}_{i}^{1} \cdot p\left(b-\bar{b}_{i}^{1}, k-\bar{k}_{i}^{1}\right), \sum_{i=1}^{r_{2}} \bar{\gamma}_{i}^{2} \cdot p\left(b-\bar{b}_{i}^{2}, k-\bar{k}_{i}^{2}\right)\right\} \\
=\min _{1 \leq j \leq N} \sum_{i=1}^{r_{j}} \bar{\gamma}_{i}^{j} \cdot p\left(b-\bar{b}_{i}^{j}, k-\bar{k}_{i}^{j}\right) \\
\bar{r}^{1}=\bar{\gamma}^{2}=(\gamma, 1-\gamma), \bar{b}^{1}=\bar{b}^{2}=(1,3), \bar{k}^{1}=(1,0), \bar{k}^{2}=(0,3) \\
N=2, \quad r_{1}=r_{2}=2
\end{gathered}
$$

Recurrence Relations

Consider a function $p: \mathbb{Z} \times \mathbb{N} \rightarrow[0,1]$ satisfying*:

$$
p(b, k)=\min _{1 \leq j \leq N} \sum_{i=1}^{r_{j}} \bar{\gamma}_{i}^{j} \cdot p\left(b-\bar{b}_{i}^{j}, k-\bar{k}_{i}^{j}\right)
$$

And $p(b, k)=0$ for $b<0, p(b, 0)=1$ for $b \geq 0$
Where $N \in \mathbb{N}$, for evey $1 \leq j \leq N$:

$$
\left(\bar{\gamma}^{j}, \bar{b}^{j}, \bar{k}^{j}\right)
$$

- $r_{j} \in \mathbb{N}$
- $\bar{\gamma}^{j} \in \mathbb{R}_{>0}^{r_{j}}$ and $\sum_{i=1}^{r_{j}} \bar{\gamma}_{i}^{j}=1$
- $\bar{k}^{j} \in \mathbb{N}^{r_{j}}, \bar{b}^{j} \in \mathbb{N}_{+}^{r_{j}}$

$$
\int \sum_{i=1} \bar{\gamma}_{i}^{j} \cdot p\left(b-\bar{b}_{i}^{j}, k-\bar{k}_{i}^{j}\right)
$$

Main Theorem

For $\alpha>0$, the α-Branching number of $\left(\bar{\gamma}^{j}, \bar{b}^{j}, \bar{k}^{j}\right)$ is

$$
M_{j}=f\left(\alpha, \bar{\gamma}^{j}, \bar{b}^{j}, \bar{k}^{j}\right)
$$

f is defined by quasiconvex minimzation problem. \rightarrow Can be computed.

Then,

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \frac{1}{k} \log (p(\alpha k, k))=-\max _{1 \leq j \leq N} M_{j} \\
p(\alpha k, k) \approx\left(\exp \left(\max _{1 \leq j \leq N} M_{j}\right)\right)^{-k}
\end{gathered}
$$

Main Theorem - Example

$$
\begin{aligned}
& p(b, k)=\min \left\{\begin{array}{l}
\gamma \cdot p(b-1, k-1)+(1-\gamma) \cdot p(b-3, k) \\
\gamma \cdot p(b-\sqrt{\text { Can be enhanced using }} \\
\text { quasiconvex optimization }
\end{array}\right. \\
& p(b, k)=0 \text { for } b<l
\end{aligned}
$$

Selec $\gamma=0.7463$. gy the theorem,
A 1.5-approximation in time $\frac{1}{p(1.5 k, k)} \approx 1.04364^{k}$
Thus, $p(1.5 k, k) \approx \exp (-0.04271)^{k} \approx 1.04364^{-k}$

$$
\bar{\gamma}^{1}=\bar{\gamma}^{2}=(\gamma, 1-\gamma), \bar{b}^{1}=\bar{b}^{2}=(1,3), \bar{k}^{1}=(1,0), \bar{k}^{2}=(0,3)
$$

Vertex Cover

Faster parameterized approximation algorithms for vertex cover.

- $\alpha>1.4$ - a variant of $V C 3_{\gamma}$.
\rightarrow 1.5-approximation in $O^{*}\left(1.017^{k}\right)$.
- $\alpha<1.4$ - a variant of a textbook algorithm.
\rightarrow 1.1-approximation in $O^{*}\left(1.16^{k}\right)$.
Additional resuls for 3-Hitting Set

Related Work

Related Work - Recurrences

- Single variable recurrence are studied in introductory courses.

$$
p(k)=p(k-1)+p(k-4)
$$

- Eppstein, 2006. A different class of multivariate relations.
- Commonly used in Measure and Conquer.

Recurrences and the Method of Types

Back to Our Algorithm

Fix $\gamma \in(0,1)$.
$V C 3_{\gamma}(G)$
If there is $v \in V, \operatorname{deg}(v) \geq 3$:
With probability γ
Add v to the cover
With probability $1-\gamma$:
Select $S \subseteq N(v),|S|=3$
Add S to the cover
Otherwise, maxdeg $(v) \leq 2$, find a minimum vertex cover

Assumption: v is always in a minimal vertex cover

Random Process

- $P(b, k)$ - the probability of finding:
- A cover of size b or less.
- Assuming the graph has a cover of size k or less.
- Define $\left(Y_{n}\right)_{n=1}^{\infty}$ by:
- $Y_{n}=1$ if v was selected at the n-th step.
- Otherwise $Y_{n}=2$.
- $\operatorname{Pr}\left(Y_{n}=1\right)=\gamma, \operatorname{Pr}\left(Y_{n}=2\right)=1-\gamma$

Random Process - Cont'd

$$
\begin{aligned}
& \text { - } \bar{k}=(1,0) . \\
& \text { - } \bar{b}=(1,3) \\
& P(1.5 \mathrm{k}, k)=\operatorname{Pr}\left(\exists n: \sum_{\ell=1}^{n} \bar{b}_{Y_{\ell}} \leq 1.5 k \text { and } \sum_{\ell=1}^{n} \bar{k}_{Y_{\ell}} \geq k\right)
\end{aligned}
$$

The Method of Types

- $\left(a_{1}, \ldots, a_{n}\right) \in\{1,2\}^{n}$.
- The Type of $\left(a_{1}, \ldots, a_{n}\right)$ is $\mathbf{T}\left(\mathrm{a}_{1}, \ldots, a_{n}\right)=\left(T_{1}, T_{2}\right)$,

$$
T_{i}=\frac{\left|\left\{\ell \mid a_{\ell}=i\right\}\right|}{n} \text { - the frequency of } i .
$$

- For example,

$$
T(1,1,1,2,2,1)=\left(\frac{4}{6}, \frac{2}{6}\right)
$$

Sanov's Theorem [Sanov, 1961]

$Q \subseteq\left\{\bar{q} \in \mathbb{R}_{\geq 0}^{2} \mid \sum_{i=1}^{2} \bar{q}_{i}=1\right\} . \bar{\gamma}=(\gamma, 1-\gamma)$

$$
\begin{array}{r}
\operatorname{Pr}\left(\mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right) \in Q\right) \approx \exp (-n c), \quad \mathbf{c}=\min _{\bar{q} \in Q} D(\bar{q} \| \bar{\gamma}) \\
\lim _{n \rightarrow \infty} \frac{1}{n} \log \operatorname{Pr}\left(\mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right) \in Q\right)=-c
\end{array}
$$

D is the Kullback-Leibler Divergence:

$$
D(\bar{q} \| \bar{\gamma})=\sum_{i=1}^{2} \bar{q}_{i} \log \frac{\bar{q}_{i}}{\bar{\gamma}_{i}}
$$

The point in Q nearest to $\bar{\gamma}$

$$
\bar{k}=(1,0), \quad \bar{b}=(1,3) .
$$

Using Types

$$
\begin{aligned}
& P(1.5 k, k)=\operatorname{Pr}\left(\exists n: \sum_{\ell=1}^{n} \bar{b}_{Y_{\ell}} \leq 1.5 k \text { and } \sum_{\ell=1}^{n} \bar{k}_{Y_{\ell}} \geq k\right) \\
& =\operatorname{Pr}\left(\exists n: T=\mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right), \begin{array}{c}
n \cdot T_{1} \cdot \bar{b}_{1}+n \cdot T_{2} \cdot \bar{b}_{2} \leq 1.5 k \text { and } \\
n \cdot T_{1} \cdot \bar{k}_{1}+n \cdot T_{2} \cdot \bar{k}_{2} \geq k
\end{array}\right) \\
& =\operatorname{Pr}\left(\exists n: T=\mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right), \sum_{i=1}^{2} T_{i} \cdot \bar{b}_{i} \leq 1.5 \frac{k}{n} \text { and } \sum_{i=1}^{2} T_{i} \cdot \bar{k}_{i} \geq \frac{k}{n}\right) \\
& =\operatorname{Pr}\left(\exists n: \mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right) \in Q_{\frac{k}{n}}\right) \text { where } Q_{\beta}=\left\{\begin{array}{l|l}
\bar{q} \in \mathbb{R}_{\geq 0}^{2} & \sum_{i=1}^{2} \bar{q}_{i} \bar{q}_{i} \bar{p}_{i} \leq 1.5 \beta \\
\sum_{i=1}^{2} \bar{q}_{i} \cdot \bar{k}_{i} \geq \beta
\end{array}\right\}
\end{aligned}
$$

Using Types (cont'd)

$$
P(1.5 k, k)=\operatorname{Pr}\left(\exists n: \mathbf{T}\left(Y_{1}, \ldots, Y_{n}\right) \in Q_{\frac{k}{n}}\right)
$$

$n=\frac{k}{\beta^{*}}$

$$
\begin{aligned}
& \geq \operatorname{Pr}\left(\mathbf{T}\left(Y_{1}, \ldots, Y_{\frac{k}{\beta^{*}}}\right) \in Q_{\beta^{*}}\right) \\
& \quad \approx \exp \left(-\frac{k}{\beta^{*}} D\left(\bar{q}^{*} \| \bar{\gamma}\right)\right)
\end{aligned}
$$

matching upper bound.

$$
\beta^{*}, \bar{q}^{*}=\operatorname{argmin}_{\beta, \bar{q} \in Q_{\beta}}\left(\frac{1}{\beta} D(\bar{q} \| \bar{\gamma})\right)
$$

The General Solution

- A more complicated random process
\rightarrow Involves all the terms
\rightarrow Cannot apply Sanov's theorem directly
- Properties of types carry over to the new process
- A variant of Sanov's theorem

A Faster Algorithm

Recap

- We showed a 1.5-approximation in $O^{*}\left(1.0437^{k}\right)$
- Prob. γ : select v to the cover
- Prob. $1-\gamma$: select 3 neighbors of v to the cover

$$
\begin{aligned}
& p(b, k)=\min \left\{\begin{array}{l}
\gamma \cdot p(b-1, k-1)+(1-\gamma) \cdot p(b-3, k) \\
\gamma \cdot p(b-1, k)+(1-\gamma) \cdot p(b-3, k-3)
\end{array}\right. \\
& p(b, k)=0 \text { for } \mathrm{b}<0 \text { and } p(b, 0)=1 \text { for } b \geq 0
\end{aligned}
$$

Refined Analysis

- Focus on:
- v is in a minimal cover S

- $N(v)=\{a, b, c\}$
- Two scenarios:
- v is selected to the cover $\rightarrow k$ decreases by 1 $S \backslash\{v\}$ is a cover of $G \backslash\{v\}$
- $N(v)$ is selected to the cover $\rightarrow k$ decreases by 1 $S \backslash\{v\}$ is a cover of $G \backslash N(v)$

An Improved Algorithm

$V C^{*}(G)$

If there is $v \in V, \operatorname{deg}(v) \geq 3$:

Otherwise, $\max \operatorname{deg} v \leq 2$, find a minimum vertex cover.

Analysis

- probabiliy of finding a cover of size b or less

$$
\begin{gathered}
p(b, k)=\mathrm{m} \frac{\left(v_{2} \cdot n(b-1 \cdot k-1)+\left(1-v_{2}\right) \cdot n(b-3, k-1)\right.}{\gamma_{3} \cdot p(b-1, k)+\left(1-\gamma_{3}\right) \cdot p(b-3, k-3)} \begin{array}{|c}
\gamma_{4} \cdot p(b-1, k-1)+\left(1-\gamma_{4}\right) \cdot p(b-4, k) \\
\gamma_{4} \cdot p(b-1, k)+\gamma_{4} \cdot p(b-4, k-4)
\end{array} \\
p(b, k)=0 \text { for } \mathrm{b}<0 \text { and } p(b, 0)=1 \text { for } b \geq 0
\end{gathered}
$$

visishint im arptiptamadiceryereg(eg) (2) 3. 3.

Analysis -cont'd

Using the main theorem we can optimize γ_{3}, γ_{4} and get

$$
p(1.5 k, k) \approx 1.035^{-k}
$$

By repeating the algorithm $p(1.5 k, k)^{-1}$ times we get:

- 1.5 -approximation with constant probability
- The running time is $O^{*}\left(1.035^{k}\right)$
\rightarrow Can be generalized
\rightarrow "Incorrect" branching is important

Summary and Discussion

Summary

- Analysis of two variable recurrence relations
\rightarrow Method of Types
\rightarrow Simple formula
\rightarrow In-depth understanding
- Faster parameterized approximation algorithm
\rightarrow Randomized Branching
\rightarrow Significant improvement of running time
\rightarrow Simple algorithms

