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Introduction
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Vertex Cover (VC)

• An undirected graph 𝐺 = (𝑉, 𝐸)
𝑆 ⊆ 𝑉 is a cover if:  ∀ 𝑢, 𝑣 ∈ 𝐸è 𝑆 ∩ 𝑢, 𝑣 ≠ ∅

• Decision problem: k -Vertex Cover
Decide if 𝐺 has a cover 𝑆 with S ≤ k

• Optimization:
find a cover 𝑆 of 𝐺 such that 𝑆 is minimal

• NP-hard
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Approximation

• Find a non-optimal solution in polynomial time.

• A simple polynomial time 2-approximation
• If 𝐺 has a cover of size 𝑘
• Finds a vertex cover 𝑆 with 𝑆 ≤ 2𝑘

• No (2 − 𝜀)-approximation under UGC
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Parameterization

• Associate an instance with a parameter k
• Language 𝐿 ⊆ Σ∗

• Paramterization 𝑘 = 𝜅(𝐼) for all 𝐼 ∈ 𝛴∗

• Parameterized Algorithm:
• Decide if 𝐼 ∈ 𝐿
• In time 𝑂 𝑓 𝑘 ⋅ 𝑝𝑜𝑙𝑦 𝑛 = 𝑂∗ 𝑓 𝑘
• 𝐼 = 𝑛, 𝑘 = 𝜅(𝐼)

• Special class of non-polynomial algorithms
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Parameterized Vertex Cover

• k -Vertex Cover:
• Input 𝐺 and 𝑘
• Decide if 𝐺 has a cover 𝑆 with S ≤ k

• Standard parameterization 𝜅 𝐺, 𝑘 = 𝑘

• A paramaterized  𝑂∗ 1.273" algorithm

• No 2#(") algorithm under ETH

7



Parameterized Approximation

• 𝛼 ∈ 1,2 .
• An algorithm is a parameterized 𝛼-approximation 

for Vertex Cover:

• If 𝐺 has a vertex cover of size 𝑘
èReturns a vertex cover of size 𝛼𝑘

• Running time 𝑂 𝑓 𝑘 ⋅ poly 𝑛

• Goal: Tradeoff
Increase 𝛼è Reduce the running time

8



Previous Results
• A parameterized 𝛼-approximation with running time 
𝑂∗ 1.2378&'( " [Fellows, K, Rosamond, Shachnai]
[Bourgeois, Escoffier, Paschos]

• A parameterized 1.5-approximation in 𝑂∗ 1.0883"
[Brankovic, Fernau] 
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A simple Algorithm for VC

VC2(𝐺, 𝑘)
1. If 𝑘 < 0 return FALSE

2. If 𝐸 = ∅ return TRUE
3. Pick an edge 𝑢, 𝑣 :

Return VC2(𝐺 ∖ 𝑢, 𝑘 − 1)
or VC2(𝐺 ∖ 𝑣, 𝑘 − 1)

• An 𝑂∗(2") algorithm

𝑢 𝑣

𝑘 = 2
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Approximate Solutions

• Pick an edge 𝑢, 𝑣
• Branch over:
• 𝑢 is in the cover
• 𝑣 is in the cover

• Repeat 𝑘 + 1 times

• Doubled the number of leaves
• 𝑘 + 2 “good” leaves

𝑢 𝑣

𝑘 + 1 = 3
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Randomization

• Pick an edge 𝑢, 𝑣
• With Prob. 0.5

Add 𝑢 to the cover

Else
Add 𝑣 to the cover

• Repeat 𝛼 ⋅ 𝑘 times

• What is the probability a cover is 
found?

0.5 0.5

𝑘 = 𝛼𝑘 0.50.5
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Analysis
• Let 𝑋) be a random indicator: 

• 𝑋- = 1 the 𝑛-th selected vertex reduced the minimal 
cover size by 1 (or, a cover was already found)

• Otherwise 𝑋- = 0

• Pr(𝑋) = 1 X*, … , X+'* ≥ *
&

Pr Found a cover ≥Pr 𝑋* +⋯+ 𝑋(" ≥ 𝑘

≥ Pr Binomial 𝛼𝑘,
1
2

≥ 𝑘

Pick an edge 𝑢, 𝑣
With Prob. 0.5

Add 𝑢 to the cover
Else

Add 𝑣 to the cover
Repeat 𝛼 ⋅ 𝑘 times
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Analysis- cont’d

Pr Found a cover ≥Pr Binomial 𝛼𝑘,
1
2

≥ 𝑘

≥
1

𝛼𝑘 + 1 & exp 𝛼𝐷
1
𝛼
∥
1
2

'"

=
1

𝛼𝑘 + 1 & 𝑐( '"

𝐷 is the Kullback-Leibler Divergence

𝐷 𝑎 ∥ 𝑏 = 𝑎 log
𝑎
𝑏
+ 1 − 𝑎 log

1 − 𝑎
1 − 𝑏

Standard tail bound.
Commonly dervied 

using
the Method of Types. 
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Parameterized Approximation

Run the algorithm:

𝛼𝑘 + 1 & 𝑐( " times

The graph has a cover of size 𝑘
èWith constant probability the algorithm finds a 
cover of size 𝛼𝑘

Pick an edge 𝑢, 𝑣
With Prob. 0.5

Add 𝑢 to the cover
Else

Add 𝑣 to the cover
Repeat 𝛼 ⋅ 𝑘 times
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Running Times

• For 𝛼 = 1.5 the running time is 𝑂∗ 1.0887"

• Nearly matches the current best result
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Faster Algorithm

• An 𝑂∗ 1.46" algorithm for VC:

If there is 𝑣 ∈ 𝑉, deg 𝑣 ≥ 3 branch over:
• 𝑣 is in the cover
• 𝑁(𝑣) is in the cover

Otherwise, maxdeg 𝑣 ≤ 2, find a minimum 
vertex cover

Running time: 𝑝 𝑘 = 𝑝 𝑘 − 1 + 𝑝(𝑘 − 3)

𝑣
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Faster Randomized  Algorithm
Fix 𝛾 ∈ 0,1 .

If there is 𝑣 ∈ 𝑉, deg 𝑣 ≥ 3:
With probability 𝛾

Add 𝑣 to the cover

With probability 1 − 𝛾
Select 𝑆 ⊆ 𝑁 𝑣 , |𝑆|=3
Add 𝑆 to the cover

Otherwise, maxdeg(𝑣) ≤ 2, find a minimum 
vertex cover

𝑉𝐶35 𝐺
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Success Probability
What is the probabiliy the algorithm returns a cover of 
size 𝛼𝑘?
• P(𝑏, 𝑘)- the minimal probabiliy:
• The algorithm returns a cover of size 𝑏 - budget
• Given a graph with cover of size 𝑘 - parameter

𝑝 𝑏, 𝑘 = min A
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0.

Then P 𝑏, 𝑘 ≥ 𝑝(𝑏, 𝑘)

If there is 𝑣 ∈ 𝑉, deg 𝑣 ≥ 3:
With probability 𝛾:

Add 𝑣 to the 
cover.

With probability 1 − 𝛾:
Select 𝑆 ⊆ 𝑁 𝑣 , |𝑆|=3
Add 𝑆 to the cover.

20



Success Probability- cont’d
𝑝 𝑏, 𝑘 = min A

𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0.

• 𝑝 𝑏, 𝑘 can be computed using dynamic progrmming

è Run the algorithm *
6 (","

times

è 𝛼-approximation

• We want to find 𝑐 such that 𝑝 𝛼𝑘, 𝑘 ≈ 𝑐'"

lim
"→8

1
𝑘
log 𝑝 𝛼𝑘, 𝑘 = ?
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Our Results
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Our results- Highlights 

• A solution for a wide familiy of recurrence 
relations, generalizing:
𝑝 𝑏, 𝑘 = min ?𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)

𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0.

• Parameterized approximation algorithms for:
• Vertex Cover
• 3-Hitting Set

Significant improvement of the running times.
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Generalizing The Reccurence
𝑝 𝑏, 𝑘 = min A

𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

= min F
�̅�.. ⋅ 𝑝(𝑏 − H𝑏.., 𝑘 − H𝑘..) + �̅�/. ⋅ 𝑝(𝑏 − H𝑏/., 𝑘 − H𝑘/.)
�̅�./ ⋅ 𝑝(𝑏 − H𝑏./, 𝑘 − H𝑘./) + �̅�// ⋅ 𝑝(𝑏 − H𝑏//, 𝑘 − H𝑘//)

= min I
01.

22

�̅�0. ⋅ 𝑝(𝑏 − H𝑏0., 𝑘 − H𝑘0.) ,I
01.

23

�̅�0/ ⋅ 𝑝(𝑏 − H𝑏0/, 𝑘 − H𝑘0/)

= min
.3435

I
01.

24

�̅�0
4 ⋅ 𝑝(𝑏 − H𝑏0

4, 𝑘 − H𝑘0
4)

24

�̅�. = �̅�/ = 𝛾, 1 − 𝛾 , H𝑏. = H𝑏/ = 1,3 , H𝑘. = 1,0 , H𝑘/ = 0,3
𝑁 = 2, 𝑟. = 𝑟/ = 2



Recurrence Relations 
Consider a function 𝑝: ℤ×ℕ → [0,1] satisfying*:

𝑝 𝑏, 𝑘 = min
*HIHJ

{
KL*

M!

�̅�K
I ⋅ 𝑝(𝑏 − }𝑏K

I , 𝑘 − }𝑘K
I)

And 𝑝 𝑏, 𝑘 = 0 for 𝑏 < 0 , 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0

Where 𝑁 ∈ ℕ, for evey 1 ≤ 𝑗 ≤ 𝑁:
• 𝑟I ∈ ℕ
• �̅�I ∈ ℝNO

M! and ∑KL*
M! �̅�K

I = 1
• }𝑘I ∈ ℕM!, }𝑏I ∈ ℕP

M!

�̅�4, H𝑏4, H𝑘4
Defines	the	“term”

I
01.

24

�̅�0
4 ⋅ 𝑝(𝑏 − H𝑏0

4, 𝑘 − H𝑘0
4)
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Main Theorem
For 𝛼 > 0, the  𝛼-Branching	number	of �̅�I , }𝑏I , }𝑘I is

𝑀I = 𝑓 𝛼, �̅�I , }𝑏I , }𝑘I

𝑓 is defined by quasiconvex minimzation problem.
è Can be computed.

Then,

lim
"→8

1
𝑘
log 𝑝 𝛼𝑘, 𝑘 = − max

*HIHJ
𝑀I

𝑝 𝛼𝑘, 𝑘 ≈ exp max
*HIHJ

𝑀I '"
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Main Theorem - Example

𝑝 𝑏, 𝑘 = min A𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0.

Select 𝛾 = 0.7463.	By the theorem,

lim
6→8

1
𝑘
log 𝑝 1.5𝑘, 𝑘 = −max

𝑓 1.5, �̅�., H𝑏., H𝑘.

𝑓 1.5, �̅�/, H𝑏/, H𝑘/
≈ −0.04271

Thus, 𝑝 1.5𝑘, 𝑘 ≈ exp −0.04271 " ≈ 1.04364'"

�̅�. = �̅�/ = 𝛾, 1 − 𝛾 , H𝑏. = H𝑏/ = 1,3 , H𝑘. = 1,0 , H𝑘/ = 0,3

Can be enhanced using 
quasiconvex optimization

28

A 1.5-approximation in time *
6(*.Q",")

≈ 1.04364"



Vertex Cover

Faster parameterized 
approximation algorithms for 
vertex cover.
• 𝛼 > 1.4- a variant of 𝑉𝐶39.

è 1.5-approximation in 𝑂∗ 1.0176 .

• 𝛼 < 1.4- a variant of a textbook 
algorithm.

è 1.1-approximation in 𝑂∗ 1.166 .

Additional resuls for 3-Hitting Set
29



Related Work
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Related Work – Recurrences

• Single variable recurrence are studied in 
introductory courses.

𝑝 𝑘 = 𝑝 𝑘 − 1 + 𝑝(𝑘 − 4)

• Eppstein, 2006. A different class of multivariate 
relations.

• Commonly used in Measure and Conquer.
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Recurrences and the 
Method of Types
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Back to Our Algorithm
Fix 𝛾 ∈ 0,1 .

If there is 𝑣 ∈ 𝑉, deg 𝑣 ≥ 3:
With probability 𝛾

Add 𝑣 to the cover

With probability 1 − 𝛾:
Select 𝑆 ⊆ 𝑁 𝑣 , |𝑆|=3
Add 𝑆 to the cover

Otherwise, maxdeg(𝑣) ≤ 2, find a minimum 
vertex cover

𝑉𝐶35 𝐺

Assumption: 𝑣 is always in a minimal vertex cover
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Random Process

• 𝑃(𝑏, 𝑘)- the probability of finding:
• A cover of size 𝑏 or less.
• Assuming the graph has a cover of size 𝑘 or less.

• Define 𝑌) )L*
8 by:

• 𝑌) = 1 if 𝑣 was selected at the n-th step.
• Otherwise 𝑌) = 2. 

• Pr(𝑌) = 1) = 𝛾, Pr 𝑌) = 2 = 1 − 𝛾
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Random Process – Cont’d

• }𝑘 = (1,0).
• }𝑏 = (1,3)

𝑃 1.5k, 𝑘 = Pr ∃𝑛:{
ℓL*

)

}𝑏Sℓ ≤ 1.5𝑘 and {
ℓL*

)

}𝑘Sℓ ≥ 𝑘
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The Method of Types

• 𝑎*, … , 𝑎) ∈ 1,2 ).

• The Type of 𝑎*, … , 𝑎) is 𝐓 a*, … , 𝑎) = 𝑇*, 𝑇& ,

𝑇K =
ℓ 𝑎ℓ= 𝑖

)
- the frequency of 𝑖.

• For example, 

𝐓 1,1,1,2,2,1 =
4
6
,
2
6
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Sanov’s Theorem [Sanov, 1961]

𝑄 ⊆ #𝑞 ∈ ℝ!"# ∑$%&# #𝑞$ = 1 .  �̅� = (𝛾, 1 − 𝛾)

Pr 𝐓 𝑌&, … , 𝑌' ∈ 𝑄 ≈ exp(−𝑛𝑐),			c=	min
()∈+

𝐷 #𝑞 ∥ �̅�

lim
'→-

1
𝑛
log Pr 𝐓 𝑌&, … , 𝑌' ∈ 𝑄 = −𝑐

𝐷 is the Kullback-Leibler Divergence:

𝐷 #𝑞 ∥ �̅� =E
$%&

#

#𝑞$ log
F𝑞$
�̅�$

The point in 𝑄
nearest to �̅�
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Using Types
𝑃 1.5𝑘, 𝑘 = Pr ∃𝑛:I

ℓ1.

-

H𝑏<ℓ ≤ 1.5𝑘 and I
ℓ1.

-

H𝑘<ℓ ≥ 𝑘

= Pr ∃𝑛: 𝑇 = 𝐓 𝑌., … , 𝑌- , 𝑛 ⋅ 𝑇.⋅
H𝑏. + 𝑛 ⋅ 𝑇/⋅ H𝑏/ ≤ 1.5𝑘 and

𝑛 ⋅ 𝑇.⋅ H𝑘. + 𝑛 ⋅ 𝑇/⋅ H𝑘/ ≥ 𝑘

= Pr ∃𝑛: 𝑇 = 𝐓 𝑌., … , 𝑌- ,I
01.

/

𝑇0 ⋅ H𝑏0 ≤ 1.5
𝑘
𝑛
andI

01.

/

𝑇0 ⋅ H𝑘0 ≥
𝑘
𝑛

= Pr ∃𝑛: 𝐓 𝑌!, … , 𝑌" ∈ 𝑄!
"

where 𝑄# = �̂� ∈ ℝ$%&
∑'(!& �̂�' = 1

∑'(!& �̂�' ⋅ �̂�' ≤ 1.5𝛽
∑'(!& �̂�' ⋅ �̂�' ≥ 𝛽

38

=𝑘 = 1,0 , =𝑏 = 1,3 .



Using Types (cont’d)

𝑃 1.5𝑘, 𝑘 = Pr ∃𝑛: 𝐓 𝑌., … , 𝑌- ∈ 𝑄6
-

≥ Pr 𝐓 𝑌., … , 𝑌 6
@∗

∈ 𝑄@∗

≈exp −
𝑘
𝛽∗
𝐷 H𝑞∗ ∥ �̅�

𝛽∗, H𝑞∗ = argmin@, =A∈C7
1
𝛽
𝐷 H𝑞 ∥ �̅�

𝑛 = "
d∗

matching upper bound.
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The General Solution

• A more complicated random process
è Involves all the terms
è Cannot apply Sanov’s theorem directly

• Properties of types carry over to the new process

• A variant of Sanov’s theorem
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A Faster Algorithm
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Recap

• We showed a 1.5-approximation in 𝑂∗(1.0437")

• Prob. 𝛾: select 𝑣 to the cover
• Prob. 1 − 𝛾: select 3 neighbors of 𝑣 to the cover

𝑝 𝑏, 𝑘 = min A
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘)
𝛾 ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾 ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0

𝑣
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Refined Analysis

• Focus on: 
• 𝑣 is in a minimal cover 𝑆
• 𝑁 𝑣 = 𝑎, 𝑏, 𝑐

• Two scenarios:

• 𝑣 is selected to the cover è 𝑘 decreases by 1
𝑆 ∖ {𝑣} is a cover of 𝐺 ∖ {𝑣}

• 𝑁(𝑣) is selected to the cover è 𝑘 decreases by 1
𝑆 ∖ {𝑣} is a cover of 𝐺 ∖ 𝑁 𝑣

𝑎

𝑣

𝑏 𝑐
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An Improved Algorithm
𝑉𝐶∗ 𝐺

If there is 𝑣 ∈ 𝑉, deg 𝑣 ≥ 3:

Otherwise, maxdeg 𝑣 ≤ 2, find a minimum 
vertex cover.

deg 𝑣 = 3

Add 𝑣 Add 𝑁(𝑣)

Pr = 𝛾) Pr = 1 − 𝛾)

deg 𝑣 ≥ 4:

Add 𝑣 Add S
𝑆 ⊆ 𝑁 𝑣 , 𝑆 = 4

Pr = 𝛾* Pr = 1 − 𝛾*
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Analysis

• probabiliy of finding a cover of size 𝑏 or less

𝑝 𝑏, 𝑘 = min

𝛾D ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾D ⋅ 𝑝(𝑏 − 3, 𝑘 − 1)
𝛾D ⋅ 𝑝 𝑏 − 1, 𝑘 + 1 − 𝛾D ⋅ 𝑝(𝑏 − 3, 𝑘 − 3)
𝛾E ⋅ 𝑝 𝑏 − 1, 𝑘 − 1 + 1 − 𝛾E ⋅ 𝑝(𝑏 − 4, 𝑘)
𝛾E ⋅ 𝑝 𝑏 − 1, 𝑘 + 𝛾E ⋅ 𝑝 𝑏 − 4, 𝑘 − 4

𝑝 𝑏, 𝑘 = 0 for b < 0 and 𝑝 𝑏, 0 = 1 for 𝑏 ≥ 0

𝑣 is in an optimal cover, deg 𝑣 = 3.𝑣 is not in an optimal cover, deg 𝑣 = 3.
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Analysis –cont’d

Using the main theorem we can optimize 𝛾e, 𝛾f and get

𝑝 1.5𝑘, 𝑘 ≈ 1.035'"

By repeating the algorithm 𝑝 1.5𝑘, 𝑘 '* times we get:

• 1.5 -approximation with constant probability
• The running time is 𝑂∗(1.035")

è Can be generalized

è “Incorrect” branching is important
54



Summary and Discussion
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Summary

• Analysis of two variable recurrence relations

è Method of Types

è Simple formula

è In-depth understanding

• Faster parameterized approximation algorithm
è Randomized Branching

è Significant improvement of running time

è Simple algorithms
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Thank You
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