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Strassen’s matrix multiplication [Strassen, 1969]

[
C1,1 C1,2

C2,1 C2,2

]
=

[
A1,1 A1,2

A2,1 A2,2

]
×

[
B1,1 B1,2

B2,1 B2,2

]

M1 = (A1,1 +A2,2)× (B1,1 + B2,2)

M2 = (A2,1 +A2,2)× B1,1

M3 = A1,1 × (B1,1 − B2,2)

M4 = A2,2 × (B2,1 − B1,1)

M5 = (A1,1 +A1,2)× B1,2

M6 = (A2,1 −A1,2)× (B1,1 + B1,2)

M7 = (A1,2 −A2,2)× (B2,1 + B2,2)

C1,1 = M1 +M4 −M5 +M7

C1,2 = M3 +M5

C2,1 = M2 +M4

C2,2 = M1 −M2 +M3 +M6
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+ ++ +

−1

+

−1

+ +

−1

++

−1

+

××× ×× × ×

+

−1

+ + +

−1

C11 C12 C21 C22

Figure: Strassen’s algorithm for multiplication of two 2× 2matrices.

This DAG can be thought of as a “hardwired circuit” for 2× 2matrix
multiplication.
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Computing polynomials

Definition
An Arithmetic CircuitΦ over the field F and the set
of variables X = (x1, x2, . . . , xn) is a directed acyclic
graph as follows:
▶ Leaf nodes are labelled either by a variable or a

field element from F and the root node outputs
the polynomial.

▶ Every other node is labelled by either× or +.
▶ The size ofΦ is the number of nodes present in

it.
▶ The depth ofΦ is the length of the longest leaf

to root path.

x1 1

+

1+ x1

x1 x2

+

2

x3

×

(2x1 + x2)× x3

Formulas are circuits whose underlying graph is a tree.
W.L.O.G we assume arithmetic circuits to be layered: ΣΠ · · ·ΣΠ.
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Significance of size and depth

▶ Small circuit size =⇒ efficient algorithms.

▶ Small circuit depth =⇒ efficient parallel algorithms.
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Algebraic P vs Algebraic NP [Valiant, 1979]
Definition (Algebraic P/p-computable/VP)
Class VP consists of all polynomial families {fn}n⩾0 of degree nO(1)

which can be computed by nO(1) sized arithmetic circuits.

Determinant is a “canonical” polynomial for VP.

Definition (Algebraic NP/p-definable/VNP)
Class VNP consists of all polynomial families {Fn}n⩾0 of degree
nO(1) which can be expressed as follows.

Fn(X) =
∑

e∈{0,1}
m(n)

gn,m(n)(X, e)

where gn,m(n) is a polynomial in VP.

Permanent is a “canonical” polynomial for VNP.
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Valiant’s hypothesis [Valiant, 1979]

Hypothesis

VP 6= VNP.

That is, Permanent of a generic n× nmatrix cannot be computed
by poly(n)-sized arithmetic circuits.
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Cook’s vs Valiant’s hypotheses [Bürgisser, 2000]

BP(VNP)

VNP#P

NP
P

NC3

BP(VP) VP
NC1

*Not to scale.

Given a polynomial f, we can assign a corresponding Boolean
function BP(f) to it such that f and BP(f) agree on evaluations over
{0, 1}

N.

VP 6= VNP can be thought of as a “coarser” separation than P 6= NP.
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Cook’s vs Valiant’s hypotheses

Theorem [Bürgisser, 2000]
(GRH): If VP = VNP then non-uniform #P ⊆ non-uniform NC3.
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Cook’s vs Valiant’s hypotheses
Theorem [Bürgisser, 2000]
(GRH): If VP = VNP then non-uniform P equals non-uniform NP.

– PH ⊆ Σ
p
2 [Karp and Lipton, 1980],

– AM = MA [Arvind, Köbler, Schöning, and Schuler, 1995].

Valiant’s observations [Valiant, 1992]
▶ “Since the set of valid algebraic identities in the algebraic

model form a proper subset of those in the Boolean setting,
lower bound proof for the algebraic setting should be strictly
easier.”

▶ “In particular, the main power of the algebraic model derives
from the possibility of cancellations.”

▶ Example: Samuelson-Berkowitz method for computing the
determinant.
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Best known general circuit bounds

▶ Best known circuit size lower bound isΩ(N logN) for a Power
Symmetric polynomial [Baur and Strassen, 1983].

▶ Best known formula size lower bound isΩ(N2) for a very
simple polynomial [Kalorkoti, 1985].

Strategy: Prove lower bounds against restricted models and then
extend the understanding to the general setting.
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A Restricted Model
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Formal degree
Formal degree of a circuit represents what the degree of the output
would have been if there were no cancellations and is an upper
bound on the degree of the output.

For an arithmetic circuit C and for all xi ∈ X,

▶ Formal degree of a leaf nodew with respect to xi,

fdegxi
(w) =

{
1 ifw is labelled by variable xi,
0 otherwise.

▶ Formal degree of a sum node u with inputs u1, . . . , uk, with
respect to xi,

fdegxi
(u) = max

j∈[k]

{
fdegxi

(uj)
}
.

▶ Formal degree of a product node v with inputs v1, . . . , vk, with
respect to xi,

fdegxi
(v) =

∑
j∈[k]

fdegxi
(vj).
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Multi-r-ic circuits

Definition
An arithmetic circuit C is said to be syntactically multi-r-ic if the
formal degree of the output node is at most r with respect each of its
variables.

When r = 1, we have multilinear circuits. We could start proving
results for r = 1 and then extend these to the setting where r > 1.
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Lower bounds for syntactically multilinear circuits

▶ Formulas: NΩ(logN) [Raz, 2006; Raz and Yehudayoff, 2008; Dvir,
Malod, Perifel, and Yehudayoff, 2012].

▶ Bounded depth formulas:
– 2Ω(N1/∆) [Raz and Yehudayoff, 2009],
– 2Ω(∆N1/∆) [Chillara, Limaye, and Srinivasan, 2019].

▶ Circuits:
– Ω

(
N1.33/log2 N

)
[Raz, Shpilka, and Yehudayoff, 2008],

– Ω
(
N2/log2 N

)
[Alon, Kumar, and Volk, 2020].

▶ Depth four circuits: NΩ
(√

N
logN

)
[Raz and Yehudayoff, 2009].
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Separations for multilinear circuits
▶ Limits of parallelization: Depth reduction shown by [Brent,

1974] toO(log s) depth is optimal for multilinear
formulas [Chillara, Limaye, and Srinivasan, 2019].

▶ Circuits vs formulas: Circuits are more powerful than
formulas [Raz, 2006]. For all small ∆, circuits of product-depth
at most ∆ are more powerful than the formulas of
product-depth ∆ [Chillara, Limaye, and Srinivasan, 2019].

▶ Branching programs vs formulas: Algebraic branching
programs are more powerful than formulas [Dvir, Malod,
Perifel, and Yehudayoff, 2012].

▶ Separation from general formulas: Over large fields, general
formulas of product-depth ∆ = o(log s) are more powerful
than multilinear formulas of product-depth ∆ [Chillara,
Limaye, and Srinivasan, 2019].
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Hierarchies for multilinear circuits

▶ Depth Hierarchy: Formulas of product-depth ∆ are
exponentially more powerful than those of product-depth
∆− 1 [Raz and Yehudayoff, 2009; Chillara, Engels, Limaye, and
Srinivasan, 2018a].

▶ Size Hierarchy: Formulas of size s are more powerful than the
small depth formulas at size√s [Chillara, Limaye, and
Srinivasan, 2018b].
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Lower bounds for syntactically multi-r-ic circuits

▶ Homogeneous formulas: NΩ(logN) [Kayal, Saha, and Tavenas,
2018].

▶ Constant Depth Homogeneous Formulas:
– 2

Ω
(

1
r
·(N

2 )
1/∆

)
[Kayal, Saha, and Tavenas, 2018],

– 2
Ω

(
∆
r
·(Nr

2 )
1/∆

)
[Chillara, 2019].

▶ Depth four:
– Multilinear polynomial:

(
n

r1.1

)Ω(√
d
r

)
whereN = n2d [Kayal,

Saha, and Tavenas, 2018].
– Multi-r-ic polynomials: For r = o(N),

- 2Ω(
√
N) [Kayal, Saha, and Tavenas, 2018],

- exp
(
Ω

(√
N logN

r

))
[Hegde and Saha, 2017].
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Depth four multi-r-ic circuits
Definition
A depth four circuit C computes the polynomials of the form

f(x1, . . . , xN) =

s∑
i=1

Ti =

s∑
i=1

di∏
j=1

Qi,j(x1, . . . , xN).

A depth four circuit C is said to be syntactically multi-r-ic if the
formal degree of its output node, with respect to each of its variables
is at most r.

For every Ti = Qi,1 · . . . ·Qi,D (i ∈ [s]),
– Each variable can appear in at most rmanyQi,j’s in Ti.
–

∀k ∈ [N],
∑

j∈[di]

degxk
(Qi,j) ⩽ r.
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A motivation to study depth four circuits

Chasm at depth four
Strong lower bounds against restricted depth four circuits imply
strong lower bounds against general arithmetic circuits.

▶ 2ω(
√
d logN) against bounded fan-in depth four circuits

[Agrawal and Vinay, 2008; Koiran, 2012; Tavenas, 2015],

▶ 2
ω

(√
rN logN

)
against multi-r-ic depth four circuits [Kumar,

de Oliveira, and Saptharishi, 2019].
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Previous work for multi-r-ic depth four circuits

Theorem [Kayal, Saha, and Tavenas, 2018]
There exists a fixed constant ν and an explicit multilinear
polynomialQn,d (over poly(n, d)many variables and degree d)
such that for all d ∈

[
log2 n,nν

]
any syntactically multi-r-ic depth

four circuit computing it must have size
(

n
r1.1

)Ω(√
d
r

)
.

We shall first define the explicit polynomial.
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Iterated matrix multiplication polynomial
The iterated matrix multiplication polynomial is the (1, 1)th entry
of product of dmany generic n× nmatrices X1, X2, . . . , Xd over
disjoint set of variables.

IMMn,d(X) =
∑

i1,i2,...,id−1∈[n]

x
(1)
(1,i1)

x
(2)
(i1,i2)

. . . x
(d−1)
(i(d−2),i(d−1))

x
(d)
(i(d−1),1)

where x(k)(i,j) is the variable in Xk indexed by (i, j) ∈ [n]× [n].

IMMn,d(X) =
[
1 · · · 1

] 
x
(1)
1,1 · · · x

(1)
1,n

... . . . ...
x
(1)
n,1 · · · x

(1)
n,n

 · · ·


x
(d)
1,1 · · · x

(d)
1,n

... . . . ...
x
(d)
n,1 · · · x

(d)
n,n


1...
1



Iterated Matrix Multiplication polynomial IMMn,d can be expressed
in terms of Detnd and thus a lower bound for IMMn,d implies a

lower bound for Detnd.
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Previous work for multi-r-ic depth four circuits

Theorem [Kayal, Saha, and Tavenas, 2018]
There exists a fixed constant ν such that for all d ∈

[
log2 n,nν

]
,

any syntactically multi-r-ic depth four circuit computing IMMn,d

must have size
(

n
r1.1

)Ω(√
d
r

)
.

▶ With increasing r, the lower bound deteriorates.

▶ Lower bound only holds for r that is o(d).
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Attempt 1

Theorem [Chillara, 2020a]
There exists a constant η ∈ (0, 1) such that for all r ⩽ nη, any
syntactically multi-r-ic depth four circuit computing IMM

n,Θ(log2 n)

must have size nΩ(logn).

- For the setting of d = Θ(log2 n), [Kayal, Saha, and Tavenas, 2018]
gives a lower bound of nΩ

(
logn√

r

)
and this is super polynomial only

when r = o(log2 n).

- Their lower bound deteriorates when r gets closer to log2 n.

- We give a bound that does not change with increasing r but holds
only for degrees that are Θ(log2 n).

- Our bound holds for a value of r that is much larger than d.
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Attempt 2

Theorem [Chillara, 2020b]
There exist constants a ⩽ b ∈ (0, 1) such that for all d ⩽ na and
r ⩽ nb, any syntactically multi-r-ic depth four circuit computing
IMMn,d must be of size nΩ(

√
d).

- Extends [Chillara, 2020a] to give lower bounds that do not deteriorate
with increasing values of r, for a wider range of d.

- Though [Kayal, Saha, and Tavenas, 2018] give a lower bound that
holds for a “slightly larger” range of d, our lower bound is
quantitively better in comparable range of d.

- As with [Chillara, 2020a], we give a bound for a range of r ⩾ d.
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Shallow separation

Theorem (Implicit in [Chillara, 2020a])
There exists an explicit polynomialQn such that

▶ it can be computed by a depth five multi-r-ic circuit of size
poly(n)

▶ but any depth four multi-r-ic circuit computing it must have
size nΩ(logn).
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Lower bounds for determinant polynomial

Lemma [Valiant, 1979]
IMMn,d can be expressed as a Determinant of a nd× ndmatrix
whose entries are either variables or constants.

Theorem (Implicit in [Kayal, Saha, and Tavenas, 2018; Chillara,
2020b])
There exist fixed constants a, b ∈ (0, 1) such that for all r ⩽ Na, any
syntactically multi-r-ic depth four circuit computing the
Determinant of a genericN×Nmatrix must have size 2Ω(Nb).
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Tools & Techniques
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Broad theme of the proofs
Define a suitable complexity measure Γ : F[X] 7→ N such that the
following holds:

– If f is computed by a small depth four multi-r-ic circuit then
Γ(f) is small.

– For the hard polynomial P, Γ(P) is large.

We “define”, and then use the dimension of Projected Shifted Skew
Partial Derivatives as the complexity measure.

This measure is related to
- Shifted Partial Derivatives measure of [Kayal, 2012],
- Skew Shifted Partial Derivatives measure of [Kayal, Saha, and
Tavenas, 2018], and

- Projected Shifted Partial Derivatives measure of [Kayal, Limaye, Saha,
and Srinivasan, 2014].
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Broad theme of proofs for depth four circuits

▶ Let a depth four circuit C be expressed as T1 + . . .+ Ts where
Ti = Qi,1 · . . . ·Qi,D.

▶ Let Γ : F[X] 7→ N be a measure defined to be the dimension of a
suitable vector space.

▶ By subadditivity, Γ(C) ⩽ s · maxi∈[s] {Γ(Ti)}.

▶ If C computes a polynomial f then Γ(C) = Γ(f).

▶

Γ(f) ⩽ s · max
i∈[s]

{Γ(Ti)} =⇒ s ⩾ Γ(f)

maxi∈[s] {Γ(Ti)}
.

▶ Show that for all i ∈ [s], Γ(Ti) is not too large, and Γ(f) � Γ(Ti).
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Shifted partial derivatives
Dimension of Shifted Partial Derivatives [Kayal, 2012]
For a polynomial f ∈ F[X],

∂=kf :=
{
∂kmf | m is a monomial of degree k

}
,

x⩽ℓ · ∂=kf :=
{
m2 · ∂km1

f | deg(m1) = k and deg(m2) ⩽ ℓ
}
,

and Γ
[SPD]
k,ℓ (f) := dim(F-span

(
x⩽ℓ · ∂=k(f)

)
).

Theorem [Gupta, Kamath, Kayal, and Saptharishi, 2014]
Let T = Q1 · . . . ·QD whereD is “small” andQi,j’s are polynomials
of “bounded degree”. Then,

- Γ
[SPD]
k,ℓ (T) is not too large for some range of k and ℓ, and

- there exists a polynomial f and parameters k, ℓ such that
Γ
[SPD]
k,ℓ (f) � Γ

[SPD]
k,ℓ (T).
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Multi-r-ic depth four circuits

Let T = Q1 · . . . ·QD be a syntactic multi-r-ic product of
polynomials.

Observation 1
Since T is syntactically multi-r-ic ,D ⩽ N · r.

Observation 2
For a random restriction ρ : X 7→ {0, ∗}, with a high probability,
ρ(Qi) is a low degree polynomial. That is, ρ(T) = Q ′

1 · . . . ·Q ′
D is a

product of low degree polynomials.
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Multi-r-ic depth four circuits

ρ(T) = Q ′
1 · . . . ·Q ′

D

Obstacle: D is still too large
WhenD ⩽ N · r, we get that Γ [SPD]

k,ℓ (ρ(T)) � Γ
[SPD]
k,ℓ (ρ(IMMn,d))

for all k and ℓ.

Fix 1: Skew partitions [Kayal, Saha, and Tavenas, 2018]

▶ Partition X into Y t Z such that |Y| � |Z|.
▶ Under suitable renaming, let

ρ(T) = Q1(Y, Z) · . . . ·Qt(Y, Z) · R(Y).

▶ Observation: t ⩽ |Z| · r.
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Shifted skew partial derivatives
Dimension of shifted skew partial derivatives [Kayal, Saha, and
Tavenas, 2018]
▶ Partition X into Y t Z such that |Y| � |Z|.
▶ Under suitable renaming, let

ρ(T) = Q1(Y, Z) · . . . ·Qt(Y, Z) · R(Y) where t ⩽ |Z| · r.

▶ σY : F[Y t Z] 7→ F[Z] such that σY(f) ∈ F[Z]. That is, all Y variables
are set to 0.

Γ
[KST]
k,ℓ (f) = dim

(
F-span

{(
z⩽ℓ · σY

(
∂=k
Y f

))})

Theorem [Kayal, Saha, and Tavenas, 2018]
For a suitable random restriction ρ and carefully chosen values of k
and ℓ, Γ [KST]k,ℓ (ρ(IMMn,d)) � Γ

[KST]
k,ℓ (ρ(T)) and s ⩾

(
n

r1.1

)Ω(√
d
r

)
.
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Refined complexity measure [Chillara, 2020a]
Observation
▶ σY(∂

=k(ρ(IMMn,d))) is a multilinear polynomial in F[Z].
▶ z⩽ℓ · σY

(
∂=k
Y f

)
could potentially lead to non-multilinear

polynomials.

Projected Shifted Skew Partial Derivatives

▶ Partition X into Y t Z such that |Y| � |Z|.
▶ σY : F[Y t Z] 7→ F[Z] such that σY(f) ∈ F[Z]. That is, all Y

variables are set to 0.
▶ mult : F[Z] 7→ F[Z] sets coefficients of all non-multilinear

monomials to 0.

Γk,ℓ(f) = dim
(
F-span

{
mult

(
z⩽ℓ · σY

(
∂=k
Y f

))})
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Devil lies in the details!

Γk,ℓ(ρ(IMMn,d))

Γk,ℓ(ρ(Ti))
⩾ nΩ(

√
d).

▶ [Nuanced but not hard] Carefully design random restrictions ρ.

– [Chillara, 2020a]: Uniform and independent random restrictions.
– [Chillara, 2020b]: Extends the random restrictions of [Kumar

and Saraf, 2017] for IMMn,d.

▶ [Nuanced but not hard] Show that Γk,ℓ(ρ(T)) is not too large.
▶ [Harder part] Show that Γk,ℓ(ρ(IMMn,d)) is large.

– [Chillara, 2020a]: Uses leading monomial distance property (cf.
[Chillara and Mukhopadhyay, 2019]), adapted to this new
measure.

– [Chillara, 2020b]: Uses a refined and careful counting through
Leading Monomial approach (cf. [Kumar and Saraf, 2017]),
adapted to this new measure.
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Future work

▶ Prove better bounds against multi-r-ic depth four circuits.

▶ Combination of syntactic multi-r-ic and homogenity
restrictions for formulas computing multi-r-ic polynomials is
somewhat like monotone computation (cf. [Jerrum and Snir,
1982; Hrubeš and Yehudayoff, 2011]). Can we

- weaken the restrictions or
- prove bounds for multi-(r− 1)-ic polynomials.

▶ Polynomial identity testing of depth three and depth four
multi-r-ic circuits.
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Thank you!
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