Ranged Polynomial Protocols

Ariel Gabizon

Outline

- A few slides of motivation and context
- Polynomial Protocols dfns,results + open question.

Succinct arguments in a nutshell Public program T, public output z.

Succinct arguments in a nutshell Public program T, public output z.

Want to prove "I know input x for program T that generates output z.

Succinct arguments in a nutshell Public program T, public output z.

Want to prove "I know input x for program T that generates output z.

Want proof size and verification time to be much smaller than run time of T.

(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Succinct arguments in a nutshell Public program T, public output z.

Want to prove "I know input x for program T that generates output z.

Want proof size and verification time to be much smaller than run time of **T**. (SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,.....]: Reduce claim to claim of form "I know polynomials that satisfy some identity" Succinct arguments in a nutshell Public program T, public output z.

Want to prove "I know input x for program T that generates output z.

Want proof size and verification time to be much smaller than run time of **T**. (SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,.....]: Reduce claim to claim of form "I know polynomials that satisfy some identity"

Succinct arguments in a nutshell

Advantage of claims about polynomials is that suffice to check at one random point

Succinct arguments in a nutshell

Advantage of claims about polynomials is that suffice to check at one random point

But need to solve "chicken and egg problem ": Prover must commit to polynomials before knowing the challenge point.

 Prover send short commitment cm(f) to polynomial.

- Prover send short commitment cm(f) to polynomial.
- Later Verifier can choose value $i \in \mathbb{F}$.

- Prover send short commitment cm(f) to polynomial.
- Later Verifier can choose value $i \in \mathbb{F}$.
- Prover sends back z = f(i) ; together with proof open(f, i) that z is correct.

- Prover send short commitment cm(f) to polynomial.
- Later Verifier can choose value $i \in \mathbb{F}$.
- Prover sends back z = f(i) ; together with proof open(f, i) that z is correct.

KZG give us PCS with commitments and openings are practically 32 bytes.

Notation: $[x] = g^x$ where g generator of elliptic curve group.

cm(f) := [f(x)]

cm(f) := [f(x)]

open(f, i) := [h(x)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

cm(f) := [f(x)]

open(f, i) := [h(x)], where $h(X) := \frac{f(X) - f(i)}{X - i}$

verify(cm, π , z, i):

$$e(cm - [z], [1]) \stackrel{?}{=} e(\pi, [x - i])$$

Idealized Polynomials Protocols

Preprocessing/inputs: : \mathcal{P} and \mathcal{V} agree in advance on $g_1, \ldots, g_t \in \mathbb{F}_{\langle d}[X]$.

Protocol:

- 1. $\mathcal{P}\text{'s}$ msgs are to ideal party I. Must be $f_i \in \mathbb{F}_{< d}[X].$
- 2. At protocol end \mathcal{V} asks I if some (constant number) of identities hold between $\{f_1, \ldots, f_{\ell}, g_1, \ldots, g_t\}$. Outputs acc iff they do.

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\sum_{\mathfrak{i} \in [\ell]} \mathsf{deg}(\mathbf{f}_{\mathfrak{i}}) + 1\right)$$

.

 $^{^1 {\}rm similar}\ {\rm statements}\ {\rm in}\ {\rm Marlin}/{\rm Fractal}/{\rm Supersonic}$

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\sum_{i \in [\ell]} \mathsf{deg}(\mathbf{f}_i) + 1\right)$$

Thm:¹ Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.

.

¹similar statements in Marlin/Fractal/Supersonic

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\sum_{\mathfrak{i} \in [\ell]} \deg(\mathfrak{f}_{\mathfrak{i}}) + 1\right)$$

Thm:¹ Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.

proof sketch: Use [KZG] polynomial commitment scheme. \mathcal{P} commits to all polys. \mathcal{V} checks identity at random challenge point.

¹similar statements in Marlin/Fractal/Supersonic

Ranged polynomials protocols

$\begin{array}{l} \textbf{Preprocessing/inputs:} \ \mathsf{Predefined polynomials} \\ g_1, \ldots, g_t \in \mathbb{F}_{< d}[X] \\ \textbf{Range:} \ H \subset \mathbb{F}. \end{array}$

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials $g_1, \ldots, g_t \in \mathbb{F}_{<d}[X]$ Range: $H \subset \mathbb{F}$.

Protocol:

- 1. $\mathcal{P}\text{'s}$ msgs are to ideal party I. Must be $f_i \in \mathbb{F}_{< d}[X].$
- 2. At end, ${\mathcal V}$ asks I if some identity holds between $\{f_1,\ldots,f_\ell,g_1,\ldots,g_t\}$ on H.

- $\mathcal V$ wants to check identities $\mathbf P_1$, $\mathbf P_2$ on $\mathbf H$.
 - After 𝒫 finished sending {f_i}, 𝒱 sends random a₁, a₂ ∈ 𝔽.

 $\mathcal V$ wants to check identities $\mathbf P_1$, $\mathbf P_2$ on $\mathbf H$.

- After 𝒫 finished sending {f_i}, 𝒱 sends random a₁, a₂ ∈ 𝔽.
- ▶ \mathcal{P} sends $\mathsf{T} \in \mathbb{F}_{<\mathbf{d}}[\mathsf{X}]$.

 $\mathcal V$ wants to check identities $\mathbf P_1$, $\mathbf P_2$ on $\mathbf H$.

- After 𝒫 finished sending {f_i}, 𝒱 sends random a₁, a₂ ∈ 𝔽.
- ▶ \mathcal{P} sends $\mathsf{T} \in \mathbb{F}_{\langle \mathsf{d}}[\mathsf{X}]$.
- $\blacktriangleright \ \mathcal{V} \text{ checks identity } \mathbf{a}_1 \cdot \mathbf{P}_1 + \mathbf{a}_2 \cdot \mathbf{P}_2 \equiv \mathbf{T} \cdot \mathbf{Z}_{\mathbf{H}}.$

 $\begin{aligned} & \mathsf{Z}_{\mathsf{H}}(\mathsf{X}) \coloneqq \prod_{\mathfrak{a} \in \mathsf{H}} (\mathsf{X} - \mathfrak{a}). \\ & (\mathsf{Z}_{\mathsf{H}} \text{ will be a preprocessed polynomial}). \end{aligned}$

Motivates - for H-ranged protocol \mathbf{P} define

$$\mathfrak{d}(\mathbf{P}) \coloneqq \left(\sum_{i \in [\ell]} \deg(\mathbf{f}_i) + 1\right) + \mathbf{D} - |\mathbf{H}|.$$

 $D := \max$ degree of identity C checked in exec with honest \mathcal{P} .

Given
$$\mathbf{a}, \mathbf{b} \in \mathbb{F}^3$$
, want to check $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\} \stackrel{?}{=} \{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}$

Given
$$a, b \in \mathbb{F}^3$$
, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{a_1, a_2, a_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\mathfrak{a}_1+\gamma)(\mathfrak{a}_2+\gamma)(\mathfrak{a}_3+\gamma) \stackrel{?}{=} (\mathfrak{b}_1+\gamma)(\mathfrak{b}_2+\gamma)(\mathfrak{b}_3+\gamma)$$

Given
$$a, b \in \mathbb{F}^3$$
, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{a_1, a_2, a_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\mathfrak{a}_1+\gamma)(\mathfrak{a}_2+\gamma)(\mathfrak{a}_3+\gamma) \stackrel{?}{=} (\mathfrak{b}_1+\gamma)(\mathfrak{b}_2+\gamma)(\mathfrak{b}_3+\gamma)$$

If a, b different as sets then w.h.p products different.

Given
$$a, b \in \mathbb{F}^3$$
, want to check $\{b_1, b_2, b_3\} \stackrel{?}{=} \{a_1, a_2, a_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(\mathfrak{a}_1+\gamma)(\mathfrak{a}_2+\gamma)(\mathfrak{a}_3+\gamma) \stackrel{?}{=} (\mathfrak{b}_1+\gamma)(\mathfrak{b}_2+\gamma)(\mathfrak{b}_3+\gamma)$$

If a, b different as sets then w.h.p products different.

Multiset equality check - polynomial version

Given f, $g \in \mathbb{F}_{\langle d}[X]$, want to check $\{f(x)\}_{x \in H} \stackrel{?}{=} \{g(x)\}_{x \in H}$ as multisets

Reduces to:

$$\mathbf{H} = \left\{ \alpha, \alpha^2, \ldots, \alpha^n \right\}.$$

$${\mathcal P}$$
 has sent ${\mathbf f}',\,{\mathbf g}'\in {\mathbb F}_{<{\mathfrak n}}[X].$

Wants to prove:

$$\prod_{i\in[n]}f(\alpha^i)=\prod_{i\in[n]}g(\alpha^i)$$

 $f \coloneqq f' + \gamma, g \coloneqq g' + \gamma$

Multiplicative subgroups:

$$\begin{split} &H = \left\{ \alpha, \, \alpha^2, \, \dots, \, \alpha^n = 1 \right\}. \\ &L_i \text{ is i'th lagrange poly of } H: \\ &L_i(\, \alpha^i) = 1, \, L_i(\, \alpha^j) = 0, \, j \neq i \end{split}$$

Checking products with H-ranged protocols [GWC19]

1. \mathcal{P} computes Z with $Z(\alpha) = 1, Z(\alpha^{i}) = \prod_{j < i} f(\alpha^{j})/g(\alpha^{j}).$

2. Sends Z to I.

Checking products with H-ranged protocols [GWC19]

- 1. \mathcal{P} computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j) / g(\alpha^j)$.
- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on \mathbf{H} .

3.1
$$L_1(X)(Z(X) - 1) = 0$$

3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$

Checking products with H-ranged protocols [GWC19]

1.
$$\mathcal{P}$$
 computes Z with $Z(\alpha) = 1$, $Z(\alpha^i) = \prod_{j < i} f(\alpha^j) / g(\alpha^j)$.

- 2. Sends Z to I.
- 3. \mathcal{V} checks following identities on H. 3.1 $L_1(X)(Z(X) - 1) = 0$ 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$

We get $\mathfrak{d}(\mathbf{P}) = \mathbf{n} + 2\mathbf{n} - |\mathbf{H}| = 2\mathbf{n}$.

Integer M < n. Given $f \in \mathbb{F}_{\langle n}[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$.

Integer M < n. Given $f \in \mathbb{F}_{\langle n}[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$. (most?) common SNARK operation: SNARK recursion requires simulating one field using another

Example 2: Range checks Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$

Example 2: Range checks Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.

Example 2: Range checks Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
- 2. $\mathcal P$ sends s to I.

Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between $s \mbox{ and } f.$

Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and f.

$$3.2 \ \mathbf{s}(\alpha) = 1$$

3.3 $s(\alpha^n) = M$

Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and f.

$$3.2 \ \mathbf{s}(\alpha) = 1$$

$$3.3 \ \mathbf{s}(\alpha^n) = \mathbf{M}$$

3.4 For each $x \in \mathbf{H} \setminus \{1\}$,

Simplifying assumption: $[1..M] \subset {f(x)}_{x \in H}$ Protocol:

- 1. \mathcal{P} computes "sorted version of f": $s \in \mathbb{F}_{\langle n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and f.
 - 3.2 $s(\alpha) = 1$
 - 3.3 $s(\alpha^n) = M$
 - 3.4 For each $x \in H \setminus \{1\}$,

$$(\mathbf{s}(\mathbf{x}\cdot\boldsymbol{\alpha})-\mathbf{s}(\mathbf{x}))^2=\mathbf{s}(\mathbf{x}\cdot\boldsymbol{\alpha})-\mathbf{s}(\mathbf{x})$$

We get $\mathfrak{d}(\mathbf{P}) = 3\mathfrak{n}$

To remove assumption use preprocessed "table poly" t with $\{t(x)\}_{x\in H}$ = [1..M] (details on next slide)

1. \mathcal{P} computes "sorted version of $\mathbf{f} \cup \mathbf{t}$ ": $\mathbf{s} \in \mathbb{F}_{\langle n+M}[X]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x}\in \mathbf{H}} = \{\mathbf{f}(\mathbf{x}), \mathbf{t}(\mathbf{x})\}_{\mathbf{x}\in \mathbf{H}},$ $\mathbf{s}(\boldsymbol{\alpha}^{i}) \leq \mathbf{s}(\boldsymbol{\alpha}^{i+1}).$

1. \mathcal{P} computes "sorted version of $\mathbf{f} \cup \mathbf{t}$ ": $\mathbf{s} \in \mathbb{F}_{n+M}[\mathbf{X}]$ with $\{\mathbf{s}(\mathbf{x})\}_{\mathbf{x}\in \mathbf{H}} = \{\mathbf{f}(\mathbf{x}), \mathbf{t}(\mathbf{x})\}_{\mathbf{x}\in \mathbf{H}},$ $\mathbf{s}(\alpha^{\mathbf{i}}) \leq \mathbf{s}(\alpha^{\mathbf{i}+1}).$

2. \mathcal{P} sends s to I.

1. \mathcal{P} computes "sorted version of $f \cup t$ ": $s \in \mathbb{F}_{n+M}[X]$ with $\{s(x)\}_{x \in H} = \{f(x), t(x)\}_{x \in H},$ $s(\alpha^i) \leq s(\alpha^{i+1}).$

- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and $f \cup t$.

1. \mathcal{P} computes "sorted version of $f \cup t$ ": $s \in \mathbb{F}_{\langle n+M}[X]$ with $\{s(x)\}_{x \in H} = \{f(x), t(x)\}_{x \in H},$ $s(\alpha^i) \leq s(\alpha^{i+1}).$

- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and $f \cup t$.

$$3.2 \ \mathbf{s}(\alpha) = 1$$

$$3.3 \ \mathbf{s}(\alpha^n) = \mathbf{M}$$

3.4 For each $x \in H \setminus \{1\}$,

- 1. \mathcal{P} computes "sorted version of $f \cup t$ ": $s \in \mathbb{F}_{\langle n+M}[X]$ with $\{s(x)\}_{x \in H} = \{f(x), t(x)\}_{x \in H},$ $s(\alpha^i) \leq s(\alpha^{i+1}).$
- 2. $\mathcal P$ sends s to I.
- 3. $\mathcal V$ checks that
 - 3.1 Mutli-set equality between s and $f \cup t$.

$$3.2 \ \mathbf{s}(\alpha) = 1$$

$$3.3 \ \mathbf{s}(\alpha^n) = \mathbf{M}$$

3.4 For each $x \in H \setminus \{1\}$,

$$(\mathbf{s}(\mathbf{x}\cdot\boldsymbol{\alpha})-\mathbf{s}(\mathbf{x}))^2=\mathbf{s}(\mathbf{x}\cdot\boldsymbol{\alpha})-\mathbf{s}(\mathbf{x})$$

We get

 $\mathfrak{d}(\mathbf{P}) = \deg(\mathbf{s}) + \deg(\mathbf{Z}) + \mathbf{D} - |\mathbf{H}| = 3\mathbf{n} + 4\mathbf{M}.$

Given integer d decomposing each element to d elements in range $M^{1/d}$ can give us

$$\mathfrak{d}(\mathbf{P}) = 4\mathbf{dn} + 4\mathbf{M}^{1/\mathbf{d}}$$

(by sending an auxiliary polynomial of degree < dn with the decomposition of each element and then running the $M^{1/d}$ size range proof on this polynomial).

Question: can we do better?