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Outline

» A few slides of motivation and context

» Polynomial Protocols - dfns,results + open
question.
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Succinct arguments in a nutshell

Advantage of claims about polynomials is that
suffice to check at one random point

But need to solve "chicken and egg problem *:
Prover must commit to polynomials before knowing
the challenge point.
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Polynomial commitment schemes [xzg, 10]

» Prover send short commitment cm(f) to
polynomial.
» Later Verifier can choose value i € F.
» Prover sends back z = f(1) ; together with
proof open(f,1i) that z is correct.
KZG give us PCS with commitments and openings
are practically 32 bytes.
Notation: [x] = g* where g generator of elliptic
curve group.
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Setup: [1],[x], ..., [xd}, for random x € F.
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Setup: [1],[x], ..., [xd}, for random x € F.

open(f, 1) :=[h(x)], where h(X) := f(X)Z_fm

—1

verify(cm, 7T, z, 1) :

e(cm —[z],[1]) = e(7, [x — i])



|dealized Polynomials Protocols

Preprocessing/inputs: : P and 'V agree in
advance on gy, . . ., gt € F.a[X].

Protocol:
1. P’'s msgs are to ideal party I. Must be
fi € FalXI.
2. At protocol end 'V asks I if some (constant

number) of identities hold between
{f1,..., fe, g1, ..., gt}. Outputs acc iff they do.
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A(P) = Zdeg(fi) +1
ielf]

Thm:! Can compile to “real” protocol in Algebraic
Group Model, where prover complexity 0(P) .

proof sketch: Use [KZG] polynomial commitment
scheme. P commits to all polys. V checks identity
at random challenge point.

Lsimilar statements in Marlin/Fractal /Supersonic
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Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials

g1, - .-, gt € FualX]
Range: H C F.

Protocol:

1. P's msgs are to ideal party I. Must be
fi € F.qlXI].

2. At end, 'V asks I if some identity holds between
{f1,..., fe, g1, ..., gt} on H.
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H-ranged protocol using polynomial
protocol:

V wants to check identities P, P> on H.

» After P finished sending {f;}, 'V sends random
a;,a €F.

» Psends T € Fq4[X].

» V checks identity a-Pi+a,-P,y=T-.Zy.

Zu(X) == [Taen(X — a).

(Zyy will be a preprocessed polynomial).



H-ranged protocol using polynomial
protocol:

Motivates - for H-ranged protocol P define

o(P):= ) deg(f))+1| +D—[H|.
iele]

D := max degree of identity C checked in exec with
honest P.
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Multiset equality check - polynomial
version

Given f, g € F4[X], want to check

{f(x) xen i {g(x)}y ey as multisets



Reduces to:

P has sent f/, g’ € F,[X].

Wants to prove:

[]fe)=]]9g(eh
ign]

i€[n]

f=f'+v.g:=9"+v



Multiplicative subgroups:

L; is i'th lagrange poly of H:

Li(a') =1, Li(ed) = 0,j #1
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Checking products with H-ranged
protocols [ewcigl

1. P computes Z W|th

Z(a) =1, Z(at) = [T, f(od) /g (o).
2. Sends Z to L.
3. 'V checks following identities on H.

3.1 Li(X)(Z(X)—1) =0
3.2 Z(X)f(X) = Z(e- X)g(X)

We get 9(P)=n—+2n— |H| =
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Example 2: Range checks

Integer M < n.. Given f € F,[X], want to check
f(x) € [1..M] for each x € H.

(most?) common SNARK operation: SNARK
recursion requires simulating one field using another
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Example 2: Range checks
Simplifying assumption: [1. M] C {f(x)}, oy
Protocol:
1. P computes "sorted version of f*: s € F,[X]
with {s(x) ey = {f(x) xen,
s(at) < s(attl).
2. P sends s to I.
3. 'V checks that
3.1 Mutli-set equality between s and f.
32 s(x) =1
33 s(a¢™) =M
3.4 For each x € H\ {1},

(s(x-a) —s(x))?=s(x-a)—s(x)

We get 0(P) =3n



To remove assumption use preprocessed "table
poly“ t with {t(x)}, oy =[1..M]
(details on next slide)
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Preprocessed poly: t € F[X] with
{t(x) ey =11..M]
Protocol:
1. P computes "sorted version of fU t":
S € Feml[X] with
{8(%) xen = {F(x), t(x) Jyen
s(o) < s(attl),
2. P sends s to I.
3. 'V checks that
3.1 Mutli-set equality between s and f U t.
32 s(ax) =1
33 s(a¢™) =M
3.4 For each x € H\ {1},

(s(x-a) —s(x))?=s(x-a) —s(x)
We get
0(P) =deg(s) +deg(Z) + D — |H| =3n+ 4M.



Given integer d decomposing each element to d
elements in range M/¢ can give us

9(P) = 4dn + 4MY14

(by sending an auxiliary polynomial of degree < dn
with the decomposition of each element and then
running the M4 size range proof on this
polynomial).

Question: can we do better?



