Ranged Polynomial Protocols

Ariel Gabizon

Aztec

Outline

- A few slides of motivation and context
- Polynomial Protocols - dfns,results + open question.

Succinct arguments in a nutshell

 Public program \mathbf{T}, public output \boldsymbol{z}.
Succinct arguments in a nutshell

 Public program \mathbf{T}, public output \boldsymbol{z}.Want to prove "I know input \boldsymbol{x} for program \mathbf{T} that generates output \boldsymbol{z}.

Succinct arguments in a nutshell

Public program \mathbf{T}, public output \boldsymbol{z}.

Want to prove "I know input $\boldsymbol{\chi}$ for program \mathbf{T} that generates output z.

Want proof size and verification time to be much smaller than run time of \mathbf{T}.
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Succinct arguments in a nutshell

Public program T, public output \boldsymbol{z}.

Want to prove "I know input x for program \mathbf{T} that generates output \boldsymbol{z}.

Want proof size and verification time to be much smaller than run time of \mathbf{T}.
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim of form "I know polynomials that satisfy some identity"

Succinct arguments in a nutshell

Public program T, public output \boldsymbol{z}.

Want to prove "I know input x for program \mathbf{T} that generates output \boldsymbol{z}.

Want proof size and verification time to be much smaller than run time of \mathbf{T}.
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim of form "I know polynomials that satisfy some identity"

Succinct arguments in a nutshell

Advantage of claims about polynomials is that suffice to check at one random point

Succinct arguments in a nutshell

Advantage of claims about polynomials is that suffice to check at one random point

But need to solve "chicken and egg problem ": Prover must commit to polynomials before knowing the challenge point.

Polynomial commitment schemes [KZG, 10]

- Prover send short commitment $\mathrm{cm}(\mathbf{f})$ to polynomial.

Polynomial commitment schemes [KZG, 10]

- Prover send short commitment $\mathrm{cm}(\mathbf{f})$ to polynomial.
- Later Verifier can choose value $\mathfrak{i} \in \mathbb{F}$.

Polynomial commitment schemes [KZG, 10]

- Prover send short commitment $\mathrm{cm}(\mathbf{f})$ to polynomial.
- Later Verifier can choose value $\mathfrak{i} \in \mathbb{F}$.
- Prover sends back $\boldsymbol{z}=\mathbf{f}(\mathbf{i})$; together with proof open (\mathbf{f}, \mathbf{i}) that z is correct.

Polynomial commitment schemes [KZG, 10]

- Prover send short commitment $\mathrm{cm}(\mathbf{f})$ to polynomial.
- Later Verifier can choose value $\mathfrak{i} \in \mathbb{F}$.
- Prover sends back $\boldsymbol{z}=\mathbf{f}(\boldsymbol{i})$; together with proof open $(\mathbf{f}, \mathfrak{i})$ that \boldsymbol{z} is correct.
KZG give us PCS with commitments and openings are practically 32 bytes.
Notation: $[\mathbf{x}]=\mathbf{g}^{\mathbf{x}}$ where \mathbf{g} generator of elliptic curve group.

Setup: $[1],[x], \ldots,\left[x^{d}\right]$, for random $x \in \mathbb{F}$.

Setup: $[1],[x], \ldots,\left[x^{d}\right]$, for random $x \in \mathbb{F}$. $\mathrm{cm}(\mathbf{f}):=[\mathbf{f}(\mathrm{x})]$

Setup: $[1],[x], \ldots,\left[x^{d}\right]$, for random $x \in \mathbb{F}$.

$$
\mathrm{cm}(\mathbf{f}):=[\mathbf{f}(\boldsymbol{x})]
$$

$\operatorname{open}(\mathbf{f}, \mathfrak{i}):=[\mathbf{h}(\mathbf{x})]$, where $\mathbf{h}(\mathbf{X}):=\frac{\mathbf{f}(\mathbf{X})-\mathbf{f}(\mathfrak{i})}{\mathbf{X}-\mathbf{i}}$

Setup: $[1],[x], \ldots,\left[x^{d}\right]$, for random $x \in \mathbb{F}$.
$\mathrm{cm}(\mathbf{f}):=[\mathbf{f}(\mathbf{x})]$
$\operatorname{open}(\mathbf{f}, \mathfrak{i}):=[\mathbf{h}(\boldsymbol{x})]$, where $\mathbf{h}(\mathbf{X}):=\frac{\mathbf{f}(\mathbf{X})-\mathbf{f}(\mathfrak{i})}{\mathbf{X}-\mathfrak{i}}$
verify $(\mathrm{cm}, \pi, z, \mathfrak{i})$:

$$
\mathbf{e}(c m-[z],[1]) \stackrel{?}{=} \mathbf{e}(\boldsymbol{\pi},[\mathbf{x}-\mathfrak{i}])
$$

Idealized Polynomials Protocols

Preprocessing/inputs: : \mathcal{P} and \mathcal{V} agree in advance on $\mathbf{g}_{1}, \ldots, \mathbf{g}_{\mathfrak{t}} \in \mathbb{F}_{<\mathrm{d}}[\mathbf{X}]$.

Protocol:

1. \mathcal{P} 's msgs are to ideal party I. Must be $\mathrm{f}_{\mathrm{i}} \in \mathbb{F}_{<\mathrm{d}}[\mathrm{X}]$.
2. At protocol end \mathcal{V} asks \mathbf{I} if some (constant number) of identities hold between $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{\ell}, \mathbf{g}_{1}, \ldots, \boldsymbol{g}_{\mathfrak{t}}\right\}$. Outputs acc iff they do.

$$
\mathfrak{d}(\mathbf{P}):=\left(\sum_{\mathfrak{i} \in[\ell]} \operatorname{deg}\left(\mathbf{f}_{\mathfrak{i}}\right)+1\right)
$$

$$
\mathfrak{d}(\mathbf{P}):=\left(\sum_{\mathfrak{i} \in[\ell]} \operatorname{deg}\left(\mathbf{f}_{\mathfrak{i}}\right)+1\right)
$$

Thm: ${ }^{1}$ Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.

$$
\mathfrak{d}(\mathbf{P}):=\left(\sum_{\mathfrak{i} \in[\ell]} \operatorname{deg}\left(\mathbf{f}_{\mathfrak{i}}\right)+1\right)
$$

Thm: ${ }^{1}$ Can compile to "real" protocol in Algebraic Group Model, where prover complexity $\mathfrak{d}(\mathbf{P})$.
proof sketch: Use [KZG] polynomial commitment scheme. \mathcal{P} commits to all polys. \mathcal{V} checks identity at random challenge point.

[^0]
Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials $\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{t}} \in \mathbb{F}_{<\mathrm{d}}[\mathrm{X}]$
Range: $\mathbf{H} \subset \mathbb{F}$.

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials $\mathbf{g}_{1}, \ldots, \mathbf{g}_{\mathrm{t}} \in \mathbb{F}_{<\mathrm{d}}[\mathrm{X}]$
Range: $\mathbf{H} \subset \mathbb{F}$.

Protocol:

1. \mathcal{P} 's msgs are to ideal party I. Must be $\mathbf{f}_{\mathrm{i}} \in \mathbb{F}_{<\mathrm{d}}[\mathrm{X}]$.
2. At end, \mathcal{V} asks \mathbf{I} if some identity holds between $\left\{\mathbf{f}_{1}, \ldots, \mathbf{f}_{\ell}, \mathbf{g}_{1}, \ldots, \boldsymbol{g}_{\mathrm{t}}\right\}$ on \mathbf{H}.

H-ranged protocol using polynomial protocol:

\mathcal{V} wants to check identities $\mathbf{P}_{1}, \mathbf{P}_{2}$ on \mathbf{H}.

- After \mathcal{P} finished sending $\left\{\mathbf{f}_{\mathbf{i}}\right\}, \mathcal{V}$ sends random $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{F}$.

H-ranged protocol using polynomial protocol:

\mathcal{V} wants to check identities $\mathbf{P}_{1}, \mathbf{P}_{2}$ on \mathbf{H}.

- After \mathcal{P} finished sending $\left\{\mathbf{f}_{\mathbf{i}}\right\}, \mathcal{V}$ sends random $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{F}$.
- \mathcal{P} sends $\mathbf{T} \in \mathbb{F}_{\text {<d }}[\mathbf{X}]$.

H-ranged protocol using polynomial protocol:

\mathcal{V} wants to check identities $\mathbf{P}_{1}, \mathbf{P}_{2}$ on \mathbf{H}.

- After \mathcal{P} finished sending $\left\{\mathbf{f}_{\mathbf{i}}\right\}, \mathcal{V}$ sends random $\mathbf{a}_{1}, \mathbf{a}_{2} \in \mathbb{F}$.
- \mathcal{P} sends $\mathbf{T} \in \mathbb{F}_{\text {da }}[\mathbf{X}]$.
$-\mathcal{V}$ checks identity $\mathbf{a}_{1} \cdot \mathbf{P}_{1}+\mathbf{a}_{2} \cdot \mathbf{P}_{2} \equiv \mathrm{~T} \cdot \mathrm{Z}_{\mathrm{H}}$.
$\mathbf{Z}_{\mathbf{H}}(\mathbf{X}):=\prod_{\mathbf{a} \in \mathbf{H}(\mathbf{X}-\mathbf{a}) .}$
(Z_{H} will be a preprocessed polynomial).

H-ranged protocol using polynomial protocol:

Motivates - for H-ranged protocol \mathbf{P} define

$$
\mathfrak{d}(\mathbf{P}):=\left(\sum_{\mathfrak{i} \in[\ell]} \operatorname{deg}\left(\mathbf{f}_{\mathfrak{i}}\right)+1\right)+\mathbf{D}-|\mathbf{H}| .
$$

$\mathbf{D}:=\max$ degree of identity \mathbf{C} checked in exec with honest \mathcal{P}.

Multiset equality check

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}^{3}$, want to check
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} \stackrel{?}{=}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \boldsymbol{a}_{3}\right\}$

Multiset equality check

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}^{3}$, want to check
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} \stackrel{?}{=}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
Choose random $\gamma \in \mathbb{F}$. Check
$\left(a_{1}+\boldsymbol{\gamma}\right)\left(a_{2}+\boldsymbol{\gamma}\right)\left(a_{3}+\boldsymbol{\gamma}\right) \stackrel{?}{=}\left(b_{1}+\boldsymbol{\gamma}\right)\left(b_{2}+\boldsymbol{\gamma}\right)\left(b_{3}+\boldsymbol{\gamma}\right)$

Multiset equality check

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}^{3}$, want to check
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} \stackrel{?}{=}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
Choose random $\gamma \in \mathbb{F}$. Check
$\left(\mathbf{a}_{1}+\boldsymbol{\gamma}\right)\left(\mathbf{a}_{2}+\boldsymbol{\gamma}\right)\left(\mathbf{a}_{3}+\boldsymbol{\gamma}\right) \stackrel{?}{=}\left(\mathbf{b}_{1}+\boldsymbol{\gamma}\right)\left(\mathbf{b}_{2}+\boldsymbol{\gamma}\right)\left(\mathbf{b}_{3}+\boldsymbol{\gamma}\right)$

If \mathbf{a}, \mathbf{b} different as sets then w.h.p products different.

Multiset equality check

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}^{3}$, want to check
$\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\} \stackrel{?}{=}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$
Choose random $\gamma \in \mathbb{F}$. Check
$\left(\mathbf{a}_{1}+\boldsymbol{\gamma}\right)\left(\mathbf{a}_{2}+\boldsymbol{\gamma}\right)\left(\mathbf{a}_{3}+\boldsymbol{\gamma}\right) \stackrel{?}{=}\left(\mathbf{b}_{1}+\boldsymbol{\gamma}\right)\left(\mathbf{b}_{2}+\boldsymbol{\gamma}\right)\left(\mathbf{b}_{3}+\boldsymbol{\gamma}\right)$

If \mathbf{a}, \mathbf{b} different as sets then w.h.p products different.

Multiset equality check - polynomial version

Given $\mathbf{f}, \mathrm{g} \in \mathbb{F}_{<\mathrm{d}}[\mathbf{X}]$, want to check
$\{\mathbf{f}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathbf{H}} \stackrel{?}{=}\{\boldsymbol{g}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}$ as multisets

Reduces to:

$$
\mathrm{H}=\left\{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{2}, \ldots, \boldsymbol{\alpha}^{\mathrm{n}}\right\}
$$

\mathcal{P} has sent $\mathbf{f}^{\prime}, \mathbf{g}^{\prime} \in \mathbb{F}_{<n}[\mathbf{X}]$.
Wants to prove:

$$
\prod_{\mathfrak{i} \in[\mathfrak{n}]} f\left(\alpha^{\mathfrak{i}}\right)=\prod_{\mathfrak{i} \in[\mathfrak{n}]} \mathbf{g}\left(\alpha^{\mathfrak{i}}\right)
$$

$$
\mathrm{f}:=\mathbf{f}^{\prime}+\gamma, \mathbf{g}:=\mathbf{g}^{\prime}+\gamma
$$

Multiplicative subgroups:

$$
\mathrm{H}=\left\{\boldsymbol{\alpha}, \boldsymbol{\alpha}^{2}, \ldots, \boldsymbol{\alpha}^{\mathfrak{n}}=1\right\} .
$$

L_{i} is i 'th lagrange poly of H :

$$
\mathbf{L}_{\mathfrak{i}}\left(\boldsymbol{\alpha}^{\mathfrak{i}}\right)=1, \mathrm{~L}_{\mathfrak{i}}\left(\boldsymbol{\alpha}^{\mathfrak{j}}\right)=0, \mathfrak{j} \neq \mathfrak{i}
$$

Checking products with H -ranged

 protocols [GWC19]1. \mathcal{P} computes Z with

$$
\mathbf{Z}(\boldsymbol{\alpha})=1, \mathbf{Z}\left(\boldsymbol{\alpha}^{\mathfrak{i}}\right)=\prod_{\mathfrak{j}<\mathfrak{i}} \mathbf{f}\left(\boldsymbol{\alpha}^{\mathfrak{j}}\right) / \mathbf{g}\left(\boldsymbol{\alpha}^{\mathfrak{j}}\right) .
$$

2. Sends \mathbf{Z} to \mathbf{I}.

Checking products with H-ranged protocols [GWC19]

1. \mathcal{P} computes \mathbf{Z} with

$$
\mathbf{Z}(\boldsymbol{\alpha})=1, \mathbf{Z}\left(\boldsymbol{\alpha}^{\mathbf{i}}\right)=\prod_{\mathfrak{j} \mathbf{i} \mathbf{i}} \mathbf{f}\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) / \mathbf{g}\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) .
$$

2. Sends \mathbf{Z} to \mathbf{I}.
3. \mathcal{V} checks following identities on H .

$$
\begin{array}{ll}
3.1 & \mathbf{L}_{1}(\mathbf{X})(\mathbf{Z}(\mathbf{X})-1)=0 \\
3.2 & \mathbf{Z}(\mathbf{X}) \mathbf{f}(\mathbf{X})=\mathbf{Z}(\boldsymbol{\alpha} \cdot \mathbf{X}) \mathbf{g}(\mathbf{X})
\end{array}
$$

Checking products with H-ranged protocols [GWC19]

1. \mathcal{P} computes Z with

$$
\mathbf{Z}(\boldsymbol{\alpha})=1, \mathbf{Z}\left(\boldsymbol{\alpha}^{\mathbf{i}}\right)=\prod_{\mathfrak{j} \mathbf{i} \mathbf{i}} \mathbf{f}\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) / \mathbf{g}\left(\boldsymbol{\alpha}^{\mathbf{j}}\right) .
$$

2. Sends \mathbf{Z} to \mathbf{I}.
3. \mathcal{V} checks following identities on \mathbf{H}.

$$
\begin{aligned}
& 3.1 \mathrm{~L}_{1}(\mathbf{X})(\mathbf{Z}(\mathbf{X})-1)=0 \\
& 3.2 \mathbf{Z}(\mathbf{X}) \mathbf{f}(\mathbf{X})=\mathbf{Z}(\boldsymbol{\alpha} \cdot \boldsymbol{X}) \mathbf{g}(\mathbf{X})
\end{aligned}
$$

We get $\mathfrak{d}(\mathbf{P})=\mathbf{n}+2 \mathbf{n}-|\mathbf{H}|=2 \mathbf{n}$.

Example 2: Range checks

Integer $\mathbf{M}<\boldsymbol{n}$. Given $\mathbf{f} \in \mathbb{F}_{<\boldsymbol{n}}[\mathbf{X}]$, want to check $\mathbf{f}(\boldsymbol{x}) \in[1 . . M]$ for each $x \in \mathbf{H}$.

Example 2: Range checks

Integer $\mathbf{M}<\boldsymbol{n}$. Given $\mathbf{f} \in \mathbb{F}_{<\boldsymbol{n}}[\mathbf{X}]$, want to check $\mathbf{f}(\mathbf{x}) \in[1 . . M]$ for each $x \in \mathbf{H}$.
(most?) common SNARK operation: SNARK recursion requires simulating one field using another

Example 2: Range checks

Simplifying assumption: $[1 . . \mathbf{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}$

Example 2: Range checks

Simplifying assumption: $[1 . . \mathbf{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{x \in \boldsymbol{H}}$ Protocol:

1. \mathcal{P} computes "sorted version of $\mathbf{f}^{\text {" }}: \mathbf{s} \in \mathbb{F}_{\text {<n }}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}$, $\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.

Example 2: Range checks

Simplifying assumption: $[1 . . \mathrm{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathrm{x} \in \mathrm{H}}$ Protocol:

1. \mathcal{P} computes "sorted version of $\mathbf{f}^{\text {" }}: \mathbf{s} \in \mathbb{F}_{\text {<n }}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \boldsymbol{H}}$, $\mathbf{s}\left(\boldsymbol{\alpha}^{\mathfrak{i}}\right) \leq \mathbf{s}\left(\boldsymbol{\alpha}^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.

Example 2: Range checks

Simplifying assumption: $[1 . . \mathrm{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathrm{x} \in \mathrm{H}}$ Protocol:

1. \mathcal{P} computes "sorted version of $\mathbf{f}^{\text {" }}: \mathbf{s} \in \mathbb{F}_{\text {<n }}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \boldsymbol{H}}$, $\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and \mathbf{f}.

Example 2: Range checks

Simplifying assumption: $[1 . . \mathbf{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}$ Protocol:

1. \mathcal{P} computes "sorted version of $\mathbf{f}^{\text {" }}: \mathbf{s} \in \mathbb{F}_{\text {<n }}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=\{\mathbf{f}(\mathbf{x})\}_{\mathrm{x} \in \mathrm{H}}$, $\mathbf{s}\left(\alpha^{\mathfrak{i}}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and \mathbf{f}.
$3.2 \mathbf{s}(\boldsymbol{\alpha})=1$
$3.3 \boldsymbol{s}\left(\boldsymbol{\alpha}^{\mathbf{n}}\right)=\boldsymbol{M}$

Example 2: Range checks

Simplifying assumption: $[1 . . \mathrm{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathrm{x} \in \mathrm{H}}$ Protocol:

1. \mathcal{P} computes "sorted version of $\mathbf{f}^{\text {" }}: \mathbf{s} \in \mathbb{F}_{\text {<n }}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=\{\mathbf{f}(\mathbf{x})\}_{\mathrm{x} \in \mathrm{H}}$, $\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and \mathbf{f}.
$3.2 \mathbf{s}(\boldsymbol{\alpha})=1$
$3.3 \boldsymbol{s}\left(\boldsymbol{\alpha}^{\mathbf{n}}\right)=\boldsymbol{M}$
3.4 For each $\boldsymbol{x} \in \mathbf{H} \backslash\{1\}$,

Example 2: Range checks

Simplifying assumption: $[1 . . \mathbf{M}] \subset\{\mathbf{f}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}$ Protocol:

1. \mathcal{P} computes " sorted version of $\mathbf{f}^{\prime \prime}: \mathbf{s} \in \mathbb{F}_{<\boldsymbol{n}}[\mathbf{X}]$ with $\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}=\{\mathbf{f}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathbf{H}}$, $\mathbf{s}\left(\alpha^{\mathfrak{i}}\right) \leq \mathbf{s}\left(\boldsymbol{\alpha}^{\mathfrak{i}+1}\right)$.
2. \mathcal{P} sends \mathbf{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and \mathbf{f}.
$3.2 \mathbf{s}(\boldsymbol{\alpha})=1$
$3.3 \boldsymbol{s}\left(\boldsymbol{\alpha}^{\mathbf{n}}\right)=\boldsymbol{M}$
3.4 For each $\boldsymbol{x} \in \mathbf{H} \backslash\{1\}$,

$$
(s(x \cdot \alpha)-s(x))^{2}=s(x \cdot \alpha)-s(x)
$$

We get $\mathfrak{d}(\mathbf{P})=3 \mathfrak{n}$

To remove assumption use preprocessed "table poly" \boldsymbol{t} with $\{\mathbf{t}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathbf{H}}=[1 . . \mathbf{M}]$
(details on next slide)

Preprocessed poly: $t \in \mathbb{F}_{\langle M}[X]$ with $\{\mathbf{t}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}=[1 . . \mathrm{M}]$

Preprocessed poly: $t \in \mathbb{F}_{<M}[X]$ with

 $\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathrm{H}}=[1 . . \mathrm{M}]$Protocol:

1. \mathcal{P} computes " sorted version of $\mathfrak{f} \cup \mathfrak{t}^{\text {" }}$:
$\mathbf{s} \in \mathbb{F}_{\langle\mathbf{n}+\boldsymbol{M}}[\mathrm{X}]$ with
$\{\mathbf{s}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathbf{H}}=\{\mathbf{f}(\boldsymbol{x}), \mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathbf{H}}$,
$\mathbf{s}\left(\alpha^{\mathfrak{i}}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.

Preprocessed poly: $t \in \mathbb{F}_{<M}[X]$ with

$\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathrm{H}}=[1 . . \mathrm{M}]$
Protocol:

1. \mathcal{P} computes "sorted version of $\mathfrak{f} \cup \mathfrak{t}^{\text {": }}$
$\mathbf{s} \in \mathbb{F}_{\langle\mathrm{n}+\mathrm{M}}[\mathrm{X}]$ with
$\{\mathbf{s}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathrm{H}}=\{\mathbf{f}(\boldsymbol{x}), \mathbf{t}(\boldsymbol{x})\}_{\mathbf{x} \in \mathrm{H}}$,
$\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.

Preprocessed poly: $t \in \mathbb{F}_{<M}[X]$ with

$\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathrm{H}}=[1 . . \mathrm{M}]$
Protocol:

1. \mathcal{P} computes " sorted version of $\mathfrak{f} \cup \mathfrak{t}^{\text {" }}$:
$\mathbf{s} \in \mathbb{F}_{\text {sn+M }}[\mathbf{X}]$ with
$\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}=\{\mathbf{f}(\boldsymbol{x}), \mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathbf{H}}$,
$\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and $\mathbf{f} \cup \mathbf{t}$.

Preprocessed poly: $t \in \mathbb{F}_{<M}[X]$ with
$\{\mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathrm{H}}=[1 . . \mathrm{M}]$

Protocol:

1. \mathcal{P} computes " sorted version of $\mathfrak{f} \cup \mathfrak{t}^{\prime \prime}$:
$\mathbf{s} \in \mathbb{F}_{\langle\mathbf{n}+\mathbf{M}}[\mathbf{X}]$ with
$\{\mathbf{s}(\boldsymbol{x})\}_{\boldsymbol{x} \in \mathrm{H}}=\{\mathbf{f}(\boldsymbol{x}), \mathbf{t}(\mathbf{x})\}_{\mathbf{x} \in \mathrm{H}}$,
$\mathbf{s}\left(\alpha^{i}\right) \leq \mathbf{s}\left(\alpha^{i+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and $\mathbf{f} \cup \mathbf{t}$.
$3.2 \boldsymbol{s}(\boldsymbol{\alpha})=1$
$3.3 \boldsymbol{s}\left(\boldsymbol{\alpha}^{\mathbf{n}}\right)=\boldsymbol{M}$
3.4 For each $\boldsymbol{x} \in \mathbf{H} \backslash\{\mathbf{1}\}$,

Preprocessed poly: $t \in \mathbb{F}_{<M}[X]$ with
$\{\mathbf{t}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}=[1 . . \mathbf{M}]$

Protocol:

1. \mathcal{P} computes " sorted version of $f \cup t^{\prime \prime}$:
$\mathbf{s} \in \mathbb{F}_{<\mathfrak{n}+\mathbf{M}}[\mathbf{X}]$ with
$\{\mathbf{s}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}=\{\mathbf{f}(\boldsymbol{x}), \mathbf{t}(\boldsymbol{x})\}_{\mathbf{x} \in \mathbf{H}}$,
$\mathbf{s}\left(\boldsymbol{\alpha}^{\mathfrak{i}}\right) \leq \mathbf{s}\left(\alpha^{\mathfrak{i}+1}\right)$.
2. \mathcal{P} sends \boldsymbol{s} to \mathbf{I}.
3. \mathcal{V} checks that
3.1 Mutli-set equality between \mathbf{s} and $\mathbf{f} \cup \mathbf{t}$.
$3.2 \mathbf{s}(\boldsymbol{\alpha})=1$
$3.3 \mathbf{s}\left(\boldsymbol{\alpha}^{\mathbf{n}}\right)=\boldsymbol{M}$
3.4 For each $\boldsymbol{x} \in \mathbf{H} \backslash\{1\}$,

$$
(s(\boldsymbol{x} \cdot \boldsymbol{\alpha})-\mathbf{s}(\boldsymbol{x}))^{2}=\mathbf{s}(\boldsymbol{x} \cdot \boldsymbol{\alpha})-\mathbf{s}(\boldsymbol{x})
$$

We get
$\mathfrak{d}(\mathbf{P})=\operatorname{deg}(\mathbf{s})+\operatorname{deg}(\mathbf{Z})+\mathbf{D}-|\mathbf{H}|=3 \mathfrak{n}+4 \mathbf{M}$.

Given integer \mathbf{d} decomposing each element to \mathbf{d} elements in range $\boldsymbol{M}^{1 / \mathrm{d}}$ can give us

$$
\mathfrak{a}(\mathbf{P})=4 \mathbf{d n}+4 \mathbf{M}^{1 / d}
$$

(by sending an auxiliary polynomial of degree < dn with the decomposition of each element and then running the $\boldsymbol{M}^{1 / d}$ size range proof on this polynomial).

Question: can we do better?

[^0]: ${ }^{1}$ similar statements in Marlin/Fractal/Supersonic

