
Ranged Polynomial Protocols

Ariel Gabizon

Outline

I A few slides of motivation and context

I Polynomial Protocols - dfns,results + open
question.

Succinct arguments in a nutshell
Public program T , public output z.

Want to prove “I know input x for program T that
generates output z.

Want proof size and verification time to be much
smaller than run time of T .
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim
of form ”I know polynomials that satisfy some
identity“

Succinct arguments in a nutshell
Public program T , public output z.

Want to prove “I know input x for program T that
generates output z.

Want proof size and verification time to be much
smaller than run time of T .
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim
of form ”I know polynomials that satisfy some
identity“

Succinct arguments in a nutshell
Public program T , public output z.

Want to prove “I know input x for program T that
generates output z.

Want proof size and verification time to be much
smaller than run time of T .
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim
of form ”I know polynomials that satisfy some
identity“

Succinct arguments in a nutshell
Public program T , public output z.

Want to prove “I know input x for program T that
generates output z.

Want proof size and verification time to be much
smaller than run time of T .
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim
of form ”I know polynomials that satisfy some
identity“

Succinct arguments in a nutshell
Public program T , public output z.

Want to prove “I know input x for program T that
generates output z.

Want proof size and verification time to be much
smaller than run time of T .
(SNARK:=Succinct Non-Interactive Argument of Knowledge)

Arithmeitization [LFKN,......]: Reduce claim to claim
of form ”I know polynomials that satisfy some
identity“

Succinct arguments in a nutshell

Advantage of claims about polynomials is that
suffice to check at one random point

But need to solve ”chicken and egg problem“:
Prover must commit to polynomials before knowing
the challenge point.

Succinct arguments in a nutshell

Advantage of claims about polynomials is that
suffice to check at one random point

But need to solve ”chicken and egg problem“:
Prover must commit to polynomials before knowing
the challenge point.

Polynomial commitment schemes [KZG, 10]

I Prover send short commitment cm(f) to
polynomial.

I Later Verifier can choose value i ∈ F.

I Prover sends back z = f(i) ; together with
proof open(f, i) that z is correct.

KZG give us PCS with commitments and openings
are practically 32 bytes.
Notation: [x] = gx where g generator of elliptic
curve group.

Polynomial commitment schemes [KZG, 10]

I Prover send short commitment cm(f) to
polynomial.

I Later Verifier can choose value i ∈ F.

I Prover sends back z = f(i) ; together with
proof open(f, i) that z is correct.

KZG give us PCS with commitments and openings
are practically 32 bytes.
Notation: [x] = gx where g generator of elliptic
curve group.

Polynomial commitment schemes [KZG, 10]

I Prover send short commitment cm(f) to
polynomial.

I Later Verifier can choose value i ∈ F.

I Prover sends back z = f(i) ; together with
proof open(f, i) that z is correct.

KZG give us PCS with commitments and openings
are practically 32 bytes.
Notation: [x] = gx where g generator of elliptic
curve group.

Polynomial commitment schemes [KZG, 10]

I Prover send short commitment cm(f) to
polynomial.

I Later Verifier can choose value i ∈ F.

I Prover sends back z = f(i) ; together with
proof open(f, i) that z is correct.

KZG give us PCS with commitments and openings
are practically 32 bytes.
Notation: [x] = gx where g generator of elliptic
curve group.

Setup: [1] , [x] , . . . ,
[
xd
]
, for random x ∈ F.

cm(f) := [f(x)]

open(f, i) := [h(x)], where h(X) := f(X)−f(i)
X−i

verify(cm,π, z, i) :

e(cm − [z] , [1])
?
= e(π, [x− i])

Setup: [1] , [x] , . . . ,
[
xd
]
, for random x ∈ F.

cm(f) := [f(x)]

open(f, i) := [h(x)], where h(X) := f(X)−f(i)
X−i

verify(cm,π, z, i) :

e(cm − [z] , [1])
?
= e(π, [x− i])

Setup: [1] , [x] , . . . ,
[
xd
]
, for random x ∈ F.

cm(f) := [f(x)]

open(f, i) := [h(x)], where h(X) := f(X)−f(i)
X−i

verify(cm,π, z, i) :

e(cm − [z] , [1])
?
= e(π, [x− i])

Setup: [1] , [x] , . . . ,
[
xd
]
, for random x ∈ F.

cm(f) := [f(x)]

open(f, i) := [h(x)], where h(X) := f(X)−f(i)
X−i

verify(cm,π, z, i) :

e(cm − [z] , [1])
?
= e(π, [x− i])

Idealized Polynomials Protocols

Preprocessing/inputs: : P and V agree in
advance on g1, . . . ,gt ∈ F<d[X].

Protocol:

1. P’s msgs are to ideal party I. Must be
fi ∈ F<d[X].

2. At protocol end V asks I if some (constant
number) of identities hold between
{f1, . . . , f`,g1, . . . ,gt}. Outputs acc iff they do.

d(P) :=

∑
i∈[`]

deg(fi) + 1


.

Thm:1 Can compile to “real” protocol in Algebraic
Group Model, where prover complexity d(P) .

proof sketch: Use [KZG] polynomial commitment
scheme. P commits to all polys. V checks identity
at random challenge point.

1similar statements in Marlin/Fractal/Supersonic

d(P) :=

∑
i∈[`]

deg(fi) + 1


.

Thm:1 Can compile to “real” protocol in Algebraic
Group Model, where prover complexity d(P) .

proof sketch: Use [KZG] polynomial commitment
scheme. P commits to all polys. V checks identity
at random challenge point.

1similar statements in Marlin/Fractal/Supersonic

d(P) :=

∑
i∈[`]

deg(fi) + 1


.

Thm:1 Can compile to “real” protocol in Algebraic
Group Model, where prover complexity d(P) .

proof sketch: Use [KZG] polynomial commitment
scheme. P commits to all polys. V checks identity
at random challenge point.

1similar statements in Marlin/Fractal/Supersonic

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials
g1, . . . ,gt ∈ F<d[X]
Range: H ⊂ F.

Protocol:

1. P’s msgs are to ideal party I. Must be
fi ∈ F<d[X].

2. At end, V asks I if some identity holds between
{f1, . . . , f`,g1, . . . ,gt} on H.

Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials
g1, . . . ,gt ∈ F<d[X]
Range: H ⊂ F.

Protocol:

1. P’s msgs are to ideal party I. Must be
fi ∈ F<d[X].

2. At end, V asks I if some identity holds between
{f1, . . . , f`,g1, . . . ,gt} on H.

H-ranged protocol using polynomial
protocol:

V wants to check identities P1,P2 on H.

I After P finished sending {fi}, V sends random
a1,a2 ∈ F.

I P sends T ∈ F<d[X].
I V checks identity a1 · P1 + a2 · P2 ≡ T · ZH.

ZH(X) :=
∏
a∈H(X− a).

(ZH will be a preprocessed polynomial).

H-ranged protocol using polynomial
protocol:

V wants to check identities P1,P2 on H.

I After P finished sending {fi}, V sends random
a1,a2 ∈ F.

I P sends T ∈ F<d[X].

I V checks identity a1 · P1 + a2 · P2 ≡ T · ZH.

ZH(X) :=
∏
a∈H(X− a).

(ZH will be a preprocessed polynomial).

H-ranged protocol using polynomial
protocol:

V wants to check identities P1,P2 on H.

I After P finished sending {fi}, V sends random
a1,a2 ∈ F.

I P sends T ∈ F<d[X].
I V checks identity a1 · P1 + a2 · P2 ≡ T · ZH.

ZH(X) :=
∏
a∈H(X− a).

(ZH will be a preprocessed polynomial).

H-ranged protocol using polynomial
protocol:

Motivates - for H-ranged protocol P define

d(P) :=

∑
i∈[`]

deg(fi) + 1

+D− |H|.

D := max degree of identity C checked in exec with
honest P.

Multiset equality check

Given a,b ∈ F3, want to check

{b1,b2,b3}
?
= {a1,a2,a3}

Choose random γ ∈ F. Check

(a1+γ)(a2+γ)(a3+γ)
?
= (b1+γ)(b2+γ)(b3+γ)

If a,b different as sets then w.h.p products
different.

Multiset equality check

Given a,b ∈ F3, want to check

{b1,b2,b3}
?
= {a1,a2,a3}

Choose random γ ∈ F. Check

(a1+γ)(a2+γ)(a3+γ)
?
= (b1+γ)(b2+γ)(b3+γ)

If a,b different as sets then w.h.p products
different.

Multiset equality check

Given a,b ∈ F3, want to check

{b1,b2,b3}
?
= {a1,a2,a3}

Choose random γ ∈ F. Check

(a1+γ)(a2+γ)(a3+γ)
?
= (b1+γ)(b2+γ)(b3+γ)

If a,b different as sets then w.h.p products
different.

Multiset equality check

Given a,b ∈ F3, want to check

{b1,b2,b3}
?
= {a1,a2,a3}

Choose random γ ∈ F. Check

(a1+γ)(a2+γ)(a3+γ)
?
= (b1+γ)(b2+γ)(b3+γ)

If a,b different as sets then w.h.p products
different.

Multiset equality check - polynomial
version

Given f,g ∈ F<d[X], want to check

{f(x)}x∈H
?
= {g(x)}x∈H as multisets

Reduces to:

H =
{
α,α2, . . . ,αn

}
.

P has sent f ′,g ′ ∈ F<n[X].

Wants to prove:∏
i∈[n]

f(αi) =
∏
i∈[n]

g(αi)

f := f ′+ γ,g := g ′+ γ

Multiplicative subgroups:

H =
{
α,α2, . . . ,αn = 1

}
.

Li is i’th lagrange poly of H:

Li(α
i) = 1,Li(α

j) = 0, j 6= i

Checking products with H-ranged
protocols [GWC19]

1. P computes Z with
Z(α) = 1,Z(αi) =

∏
j<i f(α

j)/g(αj).

2. Sends Z to I.

3. V checks following identities on H.
3.1 L1(X)(Z(X) − 1) = 0
3.2 Z(X)f(X) = Z(α · X)g(X)

We get d(P) = n+ 2n− |H| = 2n.

Checking products with H-ranged
protocols [GWC19]

1. P computes Z with
Z(α) = 1,Z(αi) =

∏
j<i f(α

j)/g(αj).

2. Sends Z to I.
3. V checks following identities on H.

3.1 L1(X)(Z(X) − 1) = 0
3.2 Z(X)f(X) = Z(α · X)g(X)

We get d(P) = n+ 2n− |H| = 2n.

Checking products with H-ranged
protocols [GWC19]

1. P computes Z with
Z(α) = 1,Z(αi) =

∏
j<i f(α

j)/g(αj).

2. Sends Z to I.
3. V checks following identities on H.

3.1 L1(X)(Z(X) − 1) = 0
3.2 Z(X)f(X) = Z(α · X)g(X)

We get d(P) = n+ 2n− |H| = 2n.

Example 2: Range checks

Integer M < n. Given f ∈ F<n[X], want to check
f(x) ∈ [1..M] for each x ∈ H.

(most?) common SNARK operation: SNARK
recursion requires simulating one field using another

Example 2: Range checks

Integer M < n. Given f ∈ F<n[X], want to check
f(x) ∈ [1..M] for each x ∈ H.
(most?) common SNARK operation: SNARK
recursion requires simulating one field using another

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H

Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.

3. V checks that
3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.

3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M

3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

Example 2: Range checks
Simplifying assumption: [1..M] ⊂ {f(x)}x∈H
Protocol:

1. P computes ”sorted version of f“: s ∈ F<n[X]
with {s(x)}x∈H = {f(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get d(P) = 3n

To remove assumption use preprocessed ”table
poly“ t with {t(x)}x∈H = [1..M]
(details on next slide)

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]

Protocol:
1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).
2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f∪ t.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]
Protocol:

1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).

2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f∪ t.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]
Protocol:

1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).
2. P sends s to I.

3. V checks that
3.1 Mutli-set equality between s and f∪ t.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]
Protocol:

1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).
2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f∪ t.

3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]
Protocol:

1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).
2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f∪ t.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Preprocessed poly: t ∈ F<M[X] with
{t(x)}x∈H = [1..M]
Protocol:

1. P computes ”sorted version of f∪ t“:
s ∈ F<n+M[X] with
{s(x)}x∈H = {f(x), t(x)}x∈H,

s(αi) ≤ s(αi+1).
2. P sends s to I.
3. V checks that

3.1 Mutli-set equality between s and f∪ t.
3.2 s(α) = 1
3.3 s(αn) =M
3.4 For each x ∈ H \ {1},

(s(x · α) − s(x))2 = s(x · α) − s(x)

We get
d(P) = deg(s) + deg(Z) +D− |H| = 3n+ 4M.

Given integer d decomposing each element to d
elements in range M1/d can give us

d(P) = 4dn+ 4M1/d

(by sending an auxiliary polynomial of degree < dn
with the decomposition of each element and then
running the M1/d size range proof on this
polynomial).

Question: can we do better?

