Ranged Polynomial Protocols

Ariel Gabizon
Aztec
(Based on work with Zachary J. Williamson)
“traditional” approach (QAP/r1cs/..)

- Program
 - Constraints in some language
 - Polynomials
 - Proof
Recently..¹ (similar in spirit to [..,BCGGHJ17,Arya,..]):

```
Program

Constraints / polynomials

Proof
```

¹https://ethresear.ch/t/using-polynomial-commitments-to-replace-state-roots/7095,plookup
Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials $g_1, \ldots, g_t \in \mathbb{F}_d[X]$

Range: $H \subset \mathbb{F}$.
Preprocessing/inputs: Predefined polynomials $g_1, \ldots, g_t \in \mathbb{F}_d[X]$

Range: $H \subset \mathbb{F}$.

Protocol:

1. \mathcal{P}'s msgs are to ideal party \mathcal{I}. Must be $f_i \in \mathbb{F}_d[X]$.
Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials
$g_1, \ldots, g_t \in \mathbb{F}_\leq d[X]$
Range: $H \subset \mathbb{F}$.

Protocol:

1. \mathcal{P}'s msgs are to ideal party \mathcal{I}. Must be $f_i \in \mathbb{F}_\leq d[X]$.

2. At end, \mathcal{V} asks \mathcal{I} if some identity holds between $\{f_1, \ldots, f_\ell, g_1, \ldots, g_t\}$ on H.
D := max degree of identity C checked in exec with honest P.

\(\mathcal{d}(P) := \left(\sum_{i \in [t]} \deg(f_i) + 1 \right) + D - |H| \).

\(^2\)similar statements in Marlin/Fractal/Supersonic
\[D := \text{max degree of identity } C \text{ checked in exec with honest } P. \]

\[\vartheta(P) := \left(\sum_{i \in [t]} \deg(f_i) + 1 \right) + D - |H|. \]

Thm:\(^2\) Can compile to “real” protocol in Algebraic Group Model, where prover complexity \(\vartheta(P) \).

\(^2\)similar statements in Marlin/Fractal/Supersonic
$$D := \text{max degree of identity } C \text{ checked in exec with honest } P.$$

$$\mathcal{d}(P) := \left(\sum_{i \in [t]} \deg(f_i) + 1 \right) + D - |H|.$$

Thm: Can compile to “real” protocol in Algebraic Group Model, where prover complexity $$\mathcal{d}(P).$$

Proof sketch: Use [KZG] polynomial commitment scheme. $$P$$ commits to all polys and $$C/Z_H.$$ $$V$$ checks identity at random challenge point.

2 similar statements in Marlin/Fractal/Surpersonic
Multiset equality check

Given $\mathbf{a}, \mathbf{b} \in \mathbb{F}^3$, want to check

$\{b_1, b_2, b_3\} \overset{?}= \{a_1, a_2, a_3\}$
Multiset equality check

Given $a, b \in \mathbb{F}^3$, want to check

$\{b_1, b_2, b_3\} \overset{?}{=} \{a_1, a_2, a_3\}$

Choose random $\gamma \in \mathbb{F}$. Check

$$(a_1+\gamma)(a_2+\gamma)(a_3+\gamma) \overset{?}{=} (b_1+\gamma)(b_2+\gamma)(b_3+\gamma)$$

If a, b different as sets then w.h.p products different.
Multiset equality check

Given $a, b \in \mathbb{F}^3$, want to check
\[{b_1, b_2, b_3} = {a_1, a_2, a_3}\]

Choose random $\gamma \in \mathbb{F}$. Check
\[(a_1+\gamma)(a_2+\gamma)(a_3+\gamma) = (b_1+\gamma)(b_2+\gamma)(b_3+\gamma)\]

If a, b different as sets then w.h.p products different.
Multiset equality check

Given \(\mathbf{a}, \mathbf{b} \in \mathbb{F}^3 \), want to check
\[
\{ b_1, b_2, b_3 \} \overset{?}{=} \{ a_1, a_2, a_3 \}
\]

Choose random \(\gamma \in \mathbb{F} \). Check
\[
(a_1 + \gamma)(a_2 + \gamma)(a_3 + \gamma) \overset{?}{=} (b_1 + \gamma)(b_2 + \gamma)(b_3 + \gamma)
\]

If \(\mathbf{a}, \mathbf{b} \) different as sets then w.h.p products different.
Multiset equality check - polynomial version

Given \(f, g \in \mathbb{F}_{<d}[X] \), want to check

\[\{ f(x) \}_{x \in \mathbb{H}} = \{ g(x) \}_{x \in \mathbb{H}} \] as multisets
Multiplicative subgroups:

\[H = \{ \alpha, \alpha^2, \ldots, \alpha^n = 1 \} \].

\(L_i \) is i’th lagrange poly of \(H \):

\[L_i(\alpha^i) = 1, \quad L_i(\alpha^j) = 0, \quad j \neq i \]
Reduces to:

\[H = \{ \alpha, \alpha^2, \ldots, \alpha^n \} \].

\(\mathcal{P} \) has sent \(f, g \in \mathbb{F}_n[X] \).

Wants to prove:

\[
\prod_{i \in [n]} f(\alpha^i) = \prod_{i \in [n]} g(\alpha^i)
\]
Checking products with \mathcal{H}-ranged protocols [GWC19]

1. \mathcal{P} computes Z with

 \[Z(\alpha) = 1, \quad Z(\alpha^i) = \prod_{j<i} f(\alpha^j)/g(\alpha^j). \]

2. Sends Z to \mathcal{I}.

Checking products with \mathcal{H}-ranged protocols \cite{GWC19}

1. \(\mathcal{P} \) computes \(Z \) with
 \[
 Z(\alpha) = 1, \quad Z(\alpha^i) = \prod_{j<i} f(\alpha^j)/g(\alpha^j).
 \]
2. Sends \(Z \) to \(\mathcal{I} \).
3. \(\mathcal{V} \) checks following identities on \(\mathcal{H} \).

 3.1 \(L_1(X)(Z(X) - 1) = 0 \)

 3.2 \(Z(X)f(X) = Z(\alpha \cdot X)g(X) \)
Checking products with \mathcal{H}-ranged protocols [GWC19]

1. \mathcal{P} computes Z with
 $$Z(\alpha) = 1, Z(\alpha^i) = \prod_{j<i} f(\alpha^j)/g(\alpha^j).$$
2. Sends Z to \mathcal{I}.
3. \mathcal{V} checks following identities on \mathcal{H}.
 3.1 $L_1(X)(Z(X) - 1) = 0$
 3.2 $Z(X)f(X) = Z(\alpha \cdot X)g(X)$

We get $d(P) = n + 2n - |H| = 2n.$
Example 2: Range checks

Integer $M < n$. Given $f \in \mathbb{F}_n[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$.
Example 2: Range checks

Integer $M < n$. Given $f \in \mathbb{F}_n[X]$, want to check $f(x) \in [1..M]$ for each $x \in H$. (most?) common SNARK operation
Example 2: Range checks

Simplyfing assumption: \([1..M] \subset \{f(x)\}_{x \in H}\)
Example 2: Range checks

Simplyfing assumption: \([1..M] \subset \{f(x)\}_{x \in H}\)

Protocol:

1. \(P\) computes ”sorted version of \(f\)“: \(s \in F_n[X]\) with \(\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}\), \(s(\alpha^i) \leq s(\alpha^{i+1})\).
Example 2: Range checks

Simplyfing assumption: \([1..M] \subset \{f(x)\}_{x \in H}\)

Protocol:

1. \(\mathcal{P}\) computes "sorted version of \(f\)": \(s \in \mathbb{F}_{\leq n}[X]\) with \(\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}\), \(s(\alpha^i) \leq s(\alpha^{i+1})\).

2. \(\mathcal{P}\) sends \(s\) to \(\mathcal{I}\).
Example 2: Range checks

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$

Protocol:

1. P computes "sorted version of $f"$; $s \in F_{<n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.

2. P sends s to I.

3. V checks that
 3.1 Mutli-set equality between s and f.
Example 2: Range checks

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$

Protocol:

1. P computes "sorted version of $f": s \in \mathbb{F}_n[X]
 with \{s(x)\}_{x \in H} = \{f(x)\}_{x \in H},
 s(\alpha^i) \leq s(\alpha^{i+1}).$

2. P sends s to I.

3. V checks that
 \begin{align*}
 3.1 & \text{ Mutli-set equality between } s \text{ and } f. \\
 3.2 & \text{ } s(\alpha) = 1 \\
 3.3 & \text{ } s(\alpha^n) = M
 \end{align*}
Example 2: Range checks

Simplyfing assumption: $[1..M] \subset \{f(x)\}_{x \in H}$

Protocol:

1. P computes "sorted version of f": $s \in F_{<n}[X]$ with $\{s(x)\}_{x \in H} = \{f(x)\}_{x \in H}$, $s(\alpha^i) \leq s(\alpha^{i+1})$.
2. P sends s to I.
3. V checks that

 3.1 Multi-set equality between s and f.
 3.2 $s(\alpha) = 1$
 3.3 $s(\alpha^n) = M$
 3.4 For each $x \in H \setminus \{1\}$,
Example 2: Range checks

Simplyfing assumption: \[[1..M] \subset \{ f(x) \}_{x \in H} \]

Protocol:

1. \(P \) computes ”sorted version of \(f \“: \ s \in \mathbb{F}_n[X]
 with \(\{ s(x) \}_{x \in H} = \{ f(x) \}_{x \in H} \),
 \(s(\alpha^i) \leq s(\alpha^{i+1}) \).

2. \(P \) sends \(s \) to \(I \).

3. \(V \) checks that
 3.1 Mutli-set equality between \(s \) and \(f \).
 3.2 \(s(\alpha) = 1 \)
 3.3 \(s(\alpha^n) = M \)
 3.4 For each \(x \in H \setminus \{1\} \),
 \[
 (s(x \cdot \alpha) - s(x))^2 = s(x \cdot \alpha) - s(x)
 \]

We get \(\text{d}(P) = 3n \)
To remove assumption use preprocessed "table poly" t with $\{t(x)\}_{x \in H} = [1..M]$ increased $\mathcal{O}(P)$ by $2M$

Open question: get almost same complexity for larger range e.g. $[1..M^2]$