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Recently..! (similar in spirit to [.. BCGGHJ17,Arya,.]):

Program

Constraints /polynomials

Proof

https:/ /ethresear.ch/t/using-polynomial-commitments-to-replace-
state-roots/7095,plookup
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Ranged polynomials protocols

Preprocessing/inputs: Predefined polynomials

g1, - .-, gt € FualX]
Range: H C F.

Protocol:

1. P's msgs are to ideal party I. Must be
fi € F.qlXI].

2. At end, 'V asks I if some identity holds between
{f1,..., fe, g1, ..., gt} on H.
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D := max degree of identity C checked in exec with
honest P.

2(P) = (¥ e deg(fi) +1) + D — [HI

Thm:2 Can compile to “real” protocol in Algebraic
Group Model, where prover complexity 0(P) .

proof sketch: Use [KZG] polynomial commitment
scheme. P commits to all polys and C/Zy. V
checks identity at random challenge point.

2similar statements in Marlin/Fractal /Supersonic
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Multiset equality check - polynomial
version

Given f, g € F4[X], want to check

[F(%) e = {9(X) } ey as multisets



Multiplicative subgroups:

L; is i'th lagrange poly of H:

Li(a') =1, Li(ed) = 0,j #1



Reduces to:

P has sent f, g € F,[X].

Wants to prove:

[Ifa)=]] g(eh
ign]

i€[n]
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protocols [ewcigl
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Checking products with H-ranged
protocols [ewcigl

1. P computes Z Wlth

Z(x)=17Z(x Hmf (od)/g(d).
2. Sends Z to L.
3. 'V checks following identities on H.

3.1 Li(X)(Z(X) —1) =0
3.2 Z(X)F(X) = Z(e- X)g(X)

We get 0(P) =n+2n — |H| =
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Example 2: Range checks
Simplyfing assumption: [1.. M] C {f(x)}, i
Protocol:
1. P computes "sorted version of f*: s € F,[X]
with {s(x) ey = {f(x) xen,
s(at) < s(attl).
2. P sends s to I.
3. 'V checks that
3.1 Mutli-set equality between s and f.
32 s(x) =1
33 s(a¢™) =M
3.4 For each x € H\ {1},

(s(x-a) —s(x))?=s(x-a)—s(x)

We get 0(P) =3n



To remove assumption use preprocessed "table
poly“ t with {t(x)},cy =[1..M] increased ?(P) by
2M

Open question: get almost same complexity for
larger range e.g. [1..M?]



