Monotone Submodular Multiple Knapsack

Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor,

Danny Raz and Hadas Shachnai

Set function properties

- Let N be a universe of elements and $f: 2^N \to \mathbb{R}_{\geq 0}$ be a set function
- ▶ Monotone if $\forall A \subseteq B$ then $f(A) \leq f(B)$
- ► Marginal value for every $A, B \subseteq N$ we define as $f_A(B) = f(A \cup B) - f(A)$
- Submodular if for any $A \subseteq B \subseteq N, e \in N \setminus B$ $f_A(\{e\}) \ge f_B(\{e\})$

Submodular function examples

Coverage function (also monotone)

 $\blacktriangleright A = \emptyset, B = \{b\}$

Other examples: cut (non monotone), rank (monotone)

Multilinear extension

- ▶ The multilinear extension $F: [0,1]^N \to \mathbb{R}_{\geq 0}$ of a f:
 - ► $F(\vec{x}) = E[f(T)]$, where $T \sim \vec{x}$ ($i \in T$ w.p. x_i)
 - $\blacktriangleright F(\mathbf{1}_T) = f(T)$
 - Extends to continuous domain
- Continuous greedy can find $\vec{x} \in P$ such that $F(\vec{x}) \ge \left(1 \frac{1}{e} \epsilon\right) \cdot OPT$
 - P is the relaxed polytope (describing the constraints)

Multiple Knapsack problem (MKP)

Input:

- ► A set of items *I* with
 - \blacktriangleright weight w_i
 - ▶ profit p_i for each $i \in I$
 - |I| = n
- ► A set of bins *B* with
 - ▶ capacity W_b for each $b \in B$
 - |B| = m

Multiple Knapsack problem (MKP)

Output:

Feasible set $T \subseteq I$ for which there exists an assignment $A = (A_1, ..., A_m)$

▶ $\sum_{i \in A_b} w_i \le W_b$ for all $b \in B$

 $\blacktriangleright \bigcup_{b \in B} A_b = T$

► Goal:

Find feasible T which maximizes $\sum_{i \in T} p_i$

Example

 $W_1 = 3$

Monotone Submodular MKP (SMKP)

Input:

- MKP constraint:
 - Set of items I with weights w_i
 - ▶ Set of bins *B* with capacities *W*_b
- ▶ Monotone submodular objective function $f: 2^I \to \mathbb{R}_{\geq 0}$

Output:

Feasible set $T \subseteq I$ with assignment A

Goal:

Find feasible set T which maximizes f(T)

Our Results

- A random polynomial time $(1 \frac{1}{e} \epsilon)$ -approximation algorithm for Monotone SMKP for any $\epsilon > 0$.
- Known hardness cannot be approximated within $(1 \frac{1}{e} + \epsilon)$
 - follows hardness subject to cardinality constraint
 - ▶ in the oracle model [Nemhauser, Wolsey. 1978]
 - ▶ unless $P \neq NP$ for coverage functions [Feige. 1998]

Related work

- $\left(1-\frac{1}{e}\right)$ -approximation for **constant** number of bins [Sviridenko. 2003]
- $\left(1 \frac{1}{e} \epsilon\right)$ -approximation for multidimensional knapsack (for constant dimension) [Kulik, Shachnai, Tamir. 2009]
- ► Deterministic $\left(1 \frac{1}{e} \epsilon\right)$ -approximation for Monotone SMKP for **uniform bin capacity** [Sun, Zhang, Zhang. 2020]
 - Randomized $\left(1 \frac{1}{e} \epsilon\right)$ -approximation for **restricted instances** of Monotone SMKP (improved later for general instances)
 - Parallel work to ours

Uniform SMKP

A special case of SMKP: the Uniform SMKP

- ▶ for each pair of bins b_1, b_2 it holds that $W_{b_1} = W_{b_2}$
- ▶ for simplicity assume $W_b = 1$ for all $b \in B$

For constant $\mu > 0$, split *I* to sets *L*, *S* of large and small items

- ▶ if $w_i \ge \mu$, item *i* is said to be large
- else, i is said to be small

• Configuration $c \subseteq L$ is a set of large items s.t. $\sum_{i \in c} w_i \leq 1$

 $|c| \le \mu^{-1}$

▶ Let *C* be the set of configurations, then $|C| \le n^{\mu^{-1}}$

Relaxation

New set of items $E = \{e \subseteq I | e \in C \text{ or } e = \{i\} \subseteq S\}$

- At most one "maximal" configuration is assigned to each bin
- Swap all bin constraints by a two dimensional "bin":
 - \blacktriangleright The bin (solution) contains at most m configurations
 - \blacktriangleright The total weight of items and configurations is m

New objective function $g: 2^E \to \mathbb{R}_{\geq 0}$ defined as $g(T) = f(\bigcup_{e \in T} e)$

maintains monotonicity and submodularity

Algorithm

Phase 1

Solve using continuous greedy (w.r.t. multilinear extension), get solution \vec{x}

Select random set $T \sim \vec{x}$

▶ If *T* violates one of the two constraints, return an empty solution

Phase 2

Solution Assign each configuration $c \in T$ to a different bin

Assign small items in T using First-Fit (add bins as necessary)

Discard worst bins

Analysis - Phase 1

Due to guarantees of the continuous greedy and the multilinear extension

$$\mathbb{E}[f(T)] \ge \left(1 - \frac{1}{e} - \epsilon\right) \cdot OPT$$

- What is the probability that T violates a constraint?
- ► Chernoff bounds yields $\Pr[T \text{ violates a constraint }] \le e^{O(-\mu^2 m)}$
 - We lose a factor of $1 e^{O(-\mu^2 m)}$

Analysis - Phase 2

What is the loss due to discarded bins/items?

Once First-Fit finishes bins are almost full

- \blacktriangleright the size of items is at most μ
- Free capacity in all but one bin is at most μ
- \blacktriangleright assigned weight to added bins is at most $\mu \cdot m$
- ▶ at most $O(\mu^2 \cdot m)$ bins were added

• $\frac{O(\mu^2 \cdot)}{1+O(\mu^2 \cdot)}$ of the bins are discarded

Final approximation -
$$\left(1 - \frac{1}{e} - \epsilon - e^{O(-\mu^2 m)} - O(\mu)\right) \cdot OPT$$

Observations

For some $\epsilon' = \epsilon + e^{O(-\mu^2 m)} + O(\mu)$ we get the desired ratio

- Larger values of m lead to better approximation
 - Small bid assumption

How well does the algorithm perform on general bin capacities?

SMKP

- ▶ Block: a set of bins K is called a block if $\forall b_1, b_2 \in K, W_{b_1} = W_{b_2}$
- ▶ Let $B = K_1 \cup \cdots \cup K_t$ then the previous algorithm guarantees

$$\left(1-\frac{1}{e}-\epsilon-\sum_{j=1}^{t}e^{O\left(-\mu^{2}|K_{j}|\right)}-O(\mu)\right)\cdot OPT$$

- We might have many small blocks...
 - Note we can handle few small blocks (enumeration)
- Can we decrease the number of small blocks?

Structuring (by grouping)

What is the loss?

Structuring loss

Structuring loss

Structuring

N-leveled instances

Level	#Blocks	Block size	#Bins
0	N^2	1	N^2
1	N ²	Ν	<i>N</i> ³
2	N^2	N^2	N^4
3	N ²	N ³	N ⁵

Structuring loss on every level: $1 - \frac{1}{N}$

- Level size grows exponentially
- Small number of small blocks
- Rounding loss converges

Algorithm

Enumerate - guess the assignment of a constant number of items

Structure - adjust capacities to get an *N*-leveled instance

Solve - using the continuous greedy algorithm (w.r.t. multilinear extension)

Round - randomly according to the fractional solution

Assign - to each block using First-Fit

Discussion

- Does the algorithm generalize to natural extensions?
 - Multiple multiple knapsacks
 - Intersecting matroid constraints
 - Non-monotone objective function
 - Curvature (maximum decrease in marginal value)

No! because we changed the objective function

Discussion

- O(1) multiple knapsacks constraints
 - Different configurations in different set of knapsacks
- Matroid constraints
 - Matroid properties are lost due to configurations
 - Cardinality constraint non-uniform "size" for each element
- Non-monotone objective function
 - If not monotone, submodularity isn't maintained
- Curvature (maximum decrease in marginal value)
 - Curvature of new objective function is always one

Extensions

F, Kulik, Shachnai. "Tight Approximations for Modular and Submodular Optimization with d-Resource Multiple Knapsack Constraints." arXiv.

"Insert" the configurations into the constraints

- Extends to:
 - Multiple multiple knapsacks constraints
 - Matroid constraints
 - Non-monotone (same approximation as single knapsack constraint)

• A
$$\left(1 - \frac{1}{e} - o(1)\right)$$
-approximation for Uniform SMKP

Thank you!