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Set function properties

 Let 𝑁 be a universe of elements and 𝑓: 2𝑁 → ℝ≥0 be a set function

 Monotone – if ∀𝐴 ⊆ 𝐵 then 𝑓 𝐴 ≤ 𝑓 𝐵

 Marginal value – for every 𝐴, 𝐵 ⊆ 𝑁 we define as

𝑓𝐴 𝐵 = 𝑓 𝐴 ∪ 𝐵 − 𝑓(𝐴)

 Submodular – if for any 𝐴 ⊆ 𝐵 ⊆ 𝑁, 𝑒 ∈ 𝑁 ∖ 𝐵

𝑓𝐴 𝑒 ≥ 𝑓𝐵 𝑒



Submodular function examples

 Coverage function (also monotone)

 𝐴 = ∅, 𝐵 = 𝑏

 Other examples: cut (non monotone), rank (monotone)

b e eb



Multilinear extension

 The multilinear extension 𝐹: 0,1 𝑁 → ℝ≥0 of a 𝑓:

 𝐹 Ԧ𝑥 = 𝐸 𝑓 𝑇 , where 𝑇~ Ԧ𝑥 (𝑖 ∈ 𝑇 w.p. 𝑥𝑖)

 𝐹 𝟏𝑇 = 𝑓 𝑇

 Extends to continuous domain

 Continuous greedy can find Ԧ𝑥 ∈ 𝑃 such that 𝐹 Ԧ𝑥 ≥ 1 −
1

𝑒
− 𝜖 ⋅ 𝑂𝑃𝑇

 𝑃 is the relaxed polytope (describing the constraints)



Multiple Knapsack problem (MKP)

 Input:

 A set of items 𝐼 with

 weight 𝑤𝑖

 profit 𝑝𝑖 for each 𝑖 ∈ 𝐼

 𝐼 = 𝑛

 A set of bins 𝐵 with 

 capacity 𝑊𝑏 for each 𝑏 ∈ 𝐵

 𝐵 = 𝑚



Multiple Knapsack problem (MKP)

 Output:

 Feasible set T ⊆ 𝐼 for which there exists an assignment 𝐴 = (𝐴1, … , 𝐴𝑚)

 σ𝑖∈𝐴𝑏
𝑤𝑖 ≤ 𝑊𝑏 for all 𝑏 ∈ 𝐵

 𝑏∈𝐵𝐴𝑏ڂ = 𝑇

 Goal:

 Find feasible 𝑇 which maximizes σ𝑖∈𝑇 𝑝𝑖
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Monotone Submodular MKP (SMKP)

 Input:

 MKP constraint:

 Set of items 𝐼 with weights 𝑤𝑖

 Set of bins 𝐵 with capacities 𝑊𝑏

 Monotone submodular objective function 𝑓: 2𝐼 → ℝ≥0

 Output:

 Feasible set T ⊆ 𝐼 with assignment 𝐴

 Goal:

 Find feasible set 𝑇 which maximizes 𝑓(𝑇)



Our Results

 A random polynomial time (1 −
1

𝑒
− 𝜖)-approximation algorithm for 

Monotone SMKP for any 𝜖 > 0.

 Known hardness – cannot be approximated within (1 −
1

𝑒
+ 𝜖)

 follows hardness subject to cardinality constraint

 in the oracle model – [Nemhauser, Wolsey. 1978]

 unless 𝑃 ≠ 𝑁𝑃 for coverage functions – [Feige. 1998]



Related work

 1 −
1

𝑒
-approximation for constant number of bins – [Sviridenko. 2003]

 1 −
1

𝑒
− 𝜖 -approximation for multidimensional knapsack (for constant 

dimension) – [Kulik, Shachnai, Tamir. 2009]

 Deterministic 1 −
1

𝑒
− 𝜖 -approximation for Monotone SMKP for uniform bin 

capacity – [Sun, Zhang, Zhang. 2020]

 Randomized 1 −
1

𝑒
− 𝜖 -approximation for restricted instances of 

Monotone SMKP (improved later for general instances)

 Parallel work to ours



Uniform SMKP

 A special case of SMKP: the Uniform SMKP 

 for each pair of bins 𝑏1, 𝑏2 it holds that 𝑊𝑏1 = 𝑊𝑏2

 for simplicity assume 𝑊𝑏 = 1 for all 𝑏 ∈ 𝐵

 For constant 𝜇 > 0, split 𝐼 to sets 𝐿, 𝑆 of large and small items

 if 𝑤𝑖 ≥ 𝜇, item 𝑖 is said to be large

 else, 𝑖 is said to be small

 Configuration 𝑐 ⊆ 𝐿 is a set of large items s.t. σ𝑖∈𝑐𝑤𝑖 ≤ 1

 𝑐 ≤ 𝜇−1

 Let 𝐶 be the set of configurations, then C ≤ 𝑛𝜇
−1



Relaxation

 New set of items 𝐸 = 𝑒 ⊆ 𝐼 𝑒 ∈ 𝐶 𝑜𝑟 𝑒 = 𝑖 ⊆ 𝑆

 At most one “maximal” configuration is assigned to each bin

 Swap all bin constraints by a two dimensional “bin”:

 The bin (solution) contains at most 𝑚 configurations

 The total weight of items and configurations is 𝑚

 New objective function 𝑔: 2𝐸 → ℝ≥0 defined as 𝑔 𝑇 = 𝑓(ڂ𝑒∈𝑇 𝑒)

 maintains monotonicity and submodularity



Algorithm

 Phase 1

 Solve using continuous greedy (w.r.t. multilinear extension), get solution Ԧ𝑥

 Select random set 𝑇~ Ԧ𝑥

 If 𝑇 violates one of the two constraints, return an empty solution

 Phase 2

 Assign each configuration 𝑐 ∈ 𝑇 to a different bin

 Assign small items in 𝑇 using First-Fit (add bins as necessary)

 Discard worst bins



Analysis – Phase 1

 Due to guarantees of the continuous greedy and the multilinear 

extension

E 𝑓 𝑇 ≥ 1 −
1

𝑒
− 𝜖 ⋅ 𝑂𝑃𝑇

 What is the probability that 𝑇 violates a constraint?

 Chernoff bounds yields Pr T violates a const𝑟𝑎𝑖𝑛𝑡 ≤ 𝑒𝑂 −𝜇2𝑚

 We lose a factor of 1 − 𝑒𝑂 −𝜇2𝑚



Analysis – Phase 2

 What is the loss due to discarded bins/items?

 Once First-Fit finishes bins are almost full

 the size of items is at most 𝜇

 free capacity in all but one bin is at most 𝜇

 assigned weight to added bins is at most 𝜇 ⋅ 𝑚

 at most 𝑂 𝜇2 ⋅ 𝑚 bins were added



𝑂 𝜇2⋅

1+𝑂 𝜇2⋅
of the bins are discarded

 Final approximation - 1 −
1

𝑒
− 𝜖 − 𝑒𝑂 −𝜇2𝑚 − 𝑂 𝜇 ⋅ 𝑂𝑃𝑇



Observations

 For some 𝜖′ = 𝜖 + 𝑒𝑂 −𝜇2𝑚 + 𝑂 𝜇 we get the desired ratio

 Larger values of 𝑚 lead to better approximation

 Small bid assumption

 How well does the algorithm perform on general bin capacities?



SMKP

 Block: a set of bins 𝐾 is called a block if ∀𝑏1, 𝑏2 ∈ 𝐾,𝑊𝑏1 = 𝑊𝑏2

 Let 𝐵 = 𝐾1 ∪⋯∪ 𝐾𝑡 then the previous algorithm guarantees

1 −
1

𝑒
− 𝜖 −

𝑗=1

𝑡

𝑒𝑂 −𝜇2|𝐾𝑗| − 𝑂 𝜇 ⋅ 𝑂𝑃𝑇

 We might have many small blocks…

 Note - we can handle few small blocks (enumeration)

 Can we decrease the number of small blocks?



Structuring (by grouping)
What is the loss?



Structuring loss



Structuring loss

We lose -
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

#𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠



Structuring

𝐿0 𝐿1 𝐿2



N-leveled instances

 Structuring loss on every level: 1 −
1

𝑁

 Level size grows exponentially

 Small number of small blocks

 Rounding loss converges

Level #Blocks Block size #Bins

0 𝑁2 1 𝑁2

1 𝑁2 𝑁 𝑁3

2 𝑁2 𝑁2 𝑁4

3 𝑁2 𝑁3 𝑁5



Algorithm

 Enumerate – guess the assignment of a constant number of items

 Structure – adjust capacities to get an 𝑁-leveled instance

 Solve – using the continuous greedy algorithm (w.r.t. multilinear 

extension)

 Round – randomly according to the fractional solution

 Assign – to each block using First-Fit



Discussion

 Does the algorithm generalize to natural extensions?

 Multiple – multiple knapsacks

 Intersecting matroid constraints

 Non-monotone objective function

 Curvature (maximum decrease in marginal value)

 No! because we changed the objective function



Discussion

 𝑂(1) multiple knapsacks constraints

 Different configurations in different set of knapsacks

 Matroid constraints

 Matroid properties are lost due to configurations

 Cardinality constraint – non-uniform “size” for each element

 Non-monotone objective function

 If not monotone, submodularity isn’t maintained

 Curvature (maximum decrease in marginal value)

 Curvature of new objective function is always one



Extensions

 F, Kulik, Shachnai. "Tight Approximations for Modular and Submodular 

Optimization with d-Resource Multiple Knapsack Constraints." arXiv.

 “Insert” the configurations into the constraints

 Extends to:

 Multiple – multiple knapsacks constraints

 Matroid constraints

 Non-monotone (same approximation as single knapsack constraint)

 A 1 −
1

𝑒
− 𝑜 1 -approximation for Uniform SMKP



Thank you!


