Monotone Submodular Multiple Knapsack

Yaron Fairstein, Ariel Kulik, Joseph (Seffi) Naor,

Danny Raz and Hadas Shachnai

Set function properties

- Let N be a universe of elements and $f: 2^{N} \rightarrow \mathbb{R}_{\geq 0}$ be a set function
- Monotone - if $\forall A \subseteq B$ then $f(A) \leq f(B)$
- Marginal value - for every $A, B \subseteq N$ we define as

$$
f_{A}(B)=f(A \cup B)-f(A)
$$

- Submodular - if for any $A \subseteq B \subseteq N, e \in N \backslash B$

$$
f_{A}(\{e\}) \geq f_{B}(\{e\})
$$

Submodular function examples

- Coverage function (also monotone)
- $A=\emptyset, B=\{b\}$

- Other examples: cut (non monotone), rank (monotone)

Multilinear extension

- The multilinear extension $F:[0,1]^{N} \rightarrow \mathbb{R}_{\geq 0}$ of a f :
- $F(\vec{x})=E[f(T)]$, where $T \sim \vec{x}\left(i \in T\right.$ w.p. $\left.x_{i}\right)$
- $F\left(\mathbf{1}_{T}\right)=f(T)$
- Extends to continuous domain
- Continuous greedy can find $\vec{x} \in P$ such that $F(\vec{x}) \geq\left(1-\frac{1}{e}-\epsilon\right) \cdot O P T$
- P is the relaxed polytope (describing the constraints)

Multiple Knapsack problem (MKP)

- Input:
\Rightarrow A set of items I with
- weight w_{i}
\Rightarrow profit p_{i} for each $i \in I$
- $|I|=n$
- A set of bins B with
- capacity W_{b} for each $b \in B$
> $|B|=m$

Multiple Knapsack problem (MKP)

- Output:
- Feasible set $\mathrm{T} \subseteq I$ for which there exists an assignment $A=\left(A_{1}, \ldots, A_{m}\right)$
> $\sum_{i \in A_{b}} w_{i} \leq W_{b}$ for all $b \in B$
- $\mathrm{U}_{b \in B} A_{b}=T$
- Goal:
\Rightarrow Find feasible T which maximizes $\sum_{i \in T} p_{i}$

$W_{1}=3$
$W_{2}=5$

Monotone Submodular MKP (SMKP)

- Input:
- MKP constraint:
- Set of items I with weights w_{i}
- Set of bins B with capacities W_{b}
- Monotone submodular objective function $f: 2^{I} \rightarrow \mathbb{R}_{\geq 0}$
- Output:
- Feasible set $\mathrm{T} \subseteq I$ with assignment A
- Goal:
- Find feasible set T which maximizes $f(T)$

Our Results

\Rightarrow A random polynomial time $\left(1-\frac{1}{e}-\epsilon\right)$-approximation algorithm for Monotone SMKP for any $\epsilon>0$.

- Known hardness - cannot be approximated within ($1-\frac{1}{e}+\epsilon$)
- follows hardness subject to cardinality constraint
- in the oracle model - [Nemhauser, Wolsey. 1978]
- unless $P \neq N P$ for coverage functions - [Feige. 1998]

Related work

- $\left(1-\frac{1}{e}\right)$-approximation for constant number of bins - [Sviridenko. 2003]
- $\left(1-\frac{1}{e}-\epsilon\right)$-approximation for multidimensional knapsack (for constant dimension) - [Kulik, Shachnai, Tamir. 2009]
- Deterministic $\left(1-\frac{1}{e}-\epsilon\right)$-approximation for Monotone SMKP for uniform bin capacity - [Sun, Zhang, Zhang. 2020]
\Rightarrow Randomized $\left(1-\frac{1}{e}-\epsilon\right)$-approximation for restricted instances of Monotone SMKP (improved later for general instances)
- Parallel work to ours

Uniform SMKP

- A special case of SMKP: the Uniform SMKP
- for each pair of bins b_{1}, b_{2} it holds that $W_{b_{1}}=W_{b_{2}}$
- for simplicity assume $W_{b}=1$ for all $b \in B$
- For constant $\mu>0$, split I to sets L, S of large and small items
- if $w_{i} \geq \mu$, item i is said to be large
- else, i is said to be small
- Configuration $c \subseteq L$ is a set of large items s.t. $\sum_{i \in c} w_{i} \leq 1$
$-|c| \leq \mu^{-1}$
- Let C be the set of configurations, then $|C| \leq n^{\mu^{-1}}$

Relaxation

- New set of items $E=\{e \subseteq I \mid e \in C$ or $e=\{i\} \subseteq S\}$
- At most one "maximal" configuration is assigned to each bin
- Swap all bin constraints by a two dimensional "bin":
- The bin (solution) contains at most m configurations
- The total weight of items and configurations is m
- New objective function $g: 2^{E} \rightarrow \mathbb{R}_{\geq 0}$ defined as $g(T)=f\left(\cup_{e \in T} e\right)$
- maintains monotonicity and submodularity

Algorithm

- Phase 1
- Solve using continuous greedy (w.r.t. multilinear extension), get solution \vec{x}
- Select random set $T \sim \vec{x}$
- If T violates one of the two constraints, return an empty solution
- Phase 2
- Assign each configuration $c \in T$ to a different bin
- Assign small items in T using First-Fit (add bins as necessary)
- Discard worst bins

Analysis - Phase 1

- Due to guarantees of the continuous greedy and the multilinear extension

$$
\mathrm{E}[f(T)] \geq\left(1-\frac{1}{e}-\epsilon\right) \cdot O P T
$$

- What is the probability that T violates a constraint?
- Chernoff bounds yields $\operatorname{Pr}[\mathrm{T}$ violates a constraint $] \leq e^{o\left(-\mu^{2} m\right)}$
- We lose a factor of $1-e^{O\left(-\mu^{2} m\right)}$

Analysis - Phase 2

- What is the loss due to discarded bins/items?
- Once First-Fit finishes bins are almost full
- the size of items is at most μ
- free capacity in all but one bin is at most μ
- assigned weight to added bins is at most $\mu \cdot m$
- at most $O\left(\mu^{2} \cdot m\right)$ bins were added
$>\frac{o\left(\mu^{2} \cdot\right)}{1+O\left(\mu^{2} .\right)}$ of the bins are discarded
- Final approximation $-\left(1-\frac{1}{e}-\epsilon-e^{O\left(-\mu^{2} m\right)}-O(\mu)\right) \cdot O P T$

Observations

- For some $\epsilon^{\prime}=\epsilon+e^{O\left(-\mu^{2} m\right)}+O(\mu)$ we get the desired ratio
- Larger values of m lead to better approximation
- Small bid assumption
- How well does the algorithm perform on general bin capacities?

SMKP

- Block: a set of bins K is called a block if $\forall b_{1}, b_{2} \in K, W_{b_{1}}=W_{b_{2}}$
- Let $B=K_{1} \cup \cdots \cup K_{t}$ then the previous algorithm guarantees

$$
\left(1-\frac{1}{e}-\epsilon-\sum_{j=1}^{t} e^{O\left(-\mu^{2}\left|K_{j}\right|\right)}-O(\mu)\right) \cdot O P T
$$

- We might have many small blocks...
- Note - we can handle few small blocks (enumeration)
- Can we decrease the number of small blocks?

Structuring (by grouping)

What is the loss?

Structuring loss

Structuring loss

Structuring

N-leveled instances

Level	\#Blocks	Block size	\#Bins
0	N^{2}	1	N^{2}
1	N^{2}	N	N^{3}
2	N^{2}	N^{2}	N^{4}
3	N^{2}	N^{3}	N^{5}

- Structuring loss on every level: $1-\frac{1}{N}$
- Level size grows exponentially
- Small number of small blocks
- Rounding loss converges

Algorithm

- Enumerate - guess the assignment of a constant number of items
- Structure - adjust capacities to get an N-leveled instance
- Solve - using the continuous greedy algorithm (w.r.t. multilinear extension)
- Round - randomly according to the fractional solution
- Assign - to each block using First-Fit

Discussion

- Does the algorithm generalize to natural extensions?
- Multiple - multiple knapsacks
- Intersecting matroid constraints
- Non-monotone objective function
- Curvature (maximum decrease in marginal value)
- No! because we changed the objective function

Discussion

- $O(1)$ multiple knapsacks constraints
- Different configurations in different set of knapsacks
- Matroid constraints
- Matroid properties are lost due to configurations
- Cardinality constraint - non-uniform "size" for each element
- Non-monotone objective function
- If not monotone, submodularity isn't maintained
- Curvature (maximum decrease in marginal value)
- Curvature of new objective function is always one

Extensions

- F, Kulik, Shachnai. "Tight Approximations for Modular and Submodular Optimization with d-Resource Multiple Knapsack Constraints." arXiv.
- "Insert" the configurations into the constraints
- Extends to:
- Multiple - multiple knapsacks constraints
- Matroid constraints
- Non-monotone (same approximation as single knapsack constraint)
- A $\left(1-\frac{1}{e}-o(1)\right)$-approximation for Uniform SMKP

Thank you!

