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Set function properties

» Let N be a universe of elements and f:2¥ - R., be a set function
» Monotone - if VA € B then f(4) < f(B)

» Marginal value - for every A,B € N we define as
fa(B) = f(AUB) — f(4)
» Submodular - if forany AS B<S N,e e N\ B
falled) = fp({e})




Submodular function examples

» Coverage function (also monotone)

» A=0,B={b)

( e

» Other examples: cut (non monotone), rank (monotone)




Multilinear extension

» The multilinear extension F:[0,1]Y - R,, of a f:
» F(x) =E[f(T)], where T~x (i € T wW.p. x;)

» F(1r) = f(T)

» Extends to continuous domain

» Continuous greedy can find x¥ € P such that F(x) > (1 - i - e) - OPT

» P is the relaxed polytope (describing the constraints)




Multiple Knapsack problem (MKP)

» Input:
» Aset of items I with
» weight w;
» profit p; foreachi €1
» |I| =n
» Aset of bins B with
» capacity W, for each b € B

» |Bl =m




Multiple Knapsack problem (MKP)

» Output:
» Feasible set T < I for which there exists an assighment A = (44, ..., 4,,)
> Yiea,Wi < Wp forall b e B
» Upepdp =T
» Goal:

» Find feasible T which maximizes }};.; p;
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Monotone Submodular MKP (SMKP)

» Input:
» MKP constraint:
» Set of items I with weights w;
» Set of bins B with capacities W,
» Monotone submodular objective function f:2! - R,
» Output:

» Feasible set T € I with assignment A

» Goal:

» Find feasible set T which maximizes f(T)




Our Results

» A random polynomial time (1 — g — €)-approximation algorithm for
Monotone SMKP for any € > 0.

» Known hardness - cannot be approximated within (1 — i + €)

» follows hardness subject to cardinality constraint
» in the oracle model - [Nemhauser, Wolsey. 1978]

» unless P # NP for coverage functions - [Feige. 1998]




Related work

> (1 — i)-approximation for constant number of bins - [Sviridenko. 2003]

> (1 — i - e)-approximation for multidimensional knapsack (for constant

dimension) - [Kulik, Shachnai, Tamir. 2009]

» Deterministic (1 — i — e)-approximation for Monotone SMKP for uniform bin

capacity - [Sun, Zhang, Zhang. 2020]

» Randomized (1 — é — e)-approximation for restricted instances of

Monotone SMKP (improved later for general instances)

» Parallel work to ours




Uniform SMKP

» A special case of SMKP: the Uniform SMKP
» for each pair of bins by, b, it holds that W, = W),
» for simplicity assume W, =1 for all b € B
» For constant u > 0, split I to sets L, S of large and small items
» if w; > u, item i is said to be large
» else, i is said to be small
» Configuration ¢ € L is a set of large items s.t. },c.w; <1
> el <u?

» Let C be the set of configurations, then |C| < n# ™




Relaxation

» NewsetofitemsE={eCSIle€eC or e={i} €S}

» At most one “maximal” configuration is assigned to each bin

» Swap all bin constraints by a two dimensional “bin”:
» The bin (solution) contains at most m configurations

» The total weight of items and configurations is m

» New objective function g: 2 - R, defined as g(T) = f (U er€)

» maintains monotonicity and submodularity




Algorithm

» Phase 1

» Solve using continuous greedy (w.r.t. multilinear extension), get solution x
» Select random set T~x

» If T violates one of the two constraints, return an empty solution

» Phase 2
» Assign each configuration c € T to a different bin
» Assign small items in T using First-Fit (add bins as necessary)

» Discard worst bins



Analysis - Phase 1

» Due to guarantees of the continuous greedy and the multilinear

extension

E[f(T)] > (1 - % - e> . OPT

» What is the probability that T violates a constraint?

» Chernoff bounds yields Pr[ T violates a constraint | < gO(-u*m)

» We lose a factor of 1 — e0(-#*m)




Analysis - Phase 2

» What is the loss due to discarded bins/items?

» Once First-Fit finishes bins are almost full

» the size of items is at most u

» free capacity in all but one bin is at most u
» assigned weight to added bins is at most u - m
>

at most O0(u? - m) bins were added

o(u*)

of the bins are discarded
1+0(u?")

>

» Final approximation - (1 — é — ¢ —0-w'm) _ O(u)) - OPT




Observations

» For some ¢’ = ¢ + e0(-#'m) 4 O(u) we get the desired ratio

» Larger values of m lead to better approximation

» Small bid assumption

» How well does the algorithm perform on general bin capacities?




SMKP

» Block: a set of bins K is called a block if Vby,b, € K, W), = W),

» Let B =K,; U--UK, then the previous algorithm guarantees

t
1
1———e- z eO-H’ 1K) — o(n) |- OPT
j=1

» We might have many small blocks...

» Note - we can handle few small blocks (enumeration)

» Can we decrease the number of small blocks?




Structuring (by grouping)

What is the loss?




Structuring loss




Structuring loss

block size
We lose
I #singletons




Structuring
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N-leveled instances

#Blocks | Blocksize | ___#Bins __
0 N2 1 N2

1 N2 N N3
2 N?2 N?2 N*
3 N?2 N3 N>

» Structuring loss on every level: 1 —%

» Level size grows exponentially
» Small number of small blocks

» Rounding loss converges



Algorithm

>

>

>

>

>

Enumerate - guess the assignment of a constant number of items

Structure - adjust capacities to get an N-leveled instance

Solve - using the continuous greedy algorithm (w.r.t. multilinear

extension)

Round - randomly according to the fractional solution

Assign - to each block using First-Fit




Discussion

» Does the algorithm generalize to natural extensions?
» Multiple - multiple knapsacks
» Intersecting matroid constraints
» Non-monotone objective function

» Curvature (maximum decrease in marginal value)

» No! because we changed the objective function




Discussion

» 0(1) multiple knapsacks constraints
» Different configurations in different set of knapsacks
» Matroid constraints
» Matroid properties are lost due to configurations
» Cardinality constraint - non-uniform “size” for each element
» Non-monotone objective function
» If not monotone, submodularity isn’t maintained
» Curvature (maximum decrease in marginal value)

» Curvature of new objective function is always one




Extensions

» F, Kulik, Shachnai. "Tight Approximations for Modular and Submodular

Optimization with d-Resource Multiple Knapsack Constraints.” arXiv.
» “Insert” the configurations into the constraints

» Extends to:
» Multiple - multiple knapsacks constraints
» Matroid constraints

» Non-monotone (same approximation as single knapsack constraint)

> A (1 — % — o(1))-approximation for Uniform SMKP



Thank you!




