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Set function properties

 Let 𝑁 be a universe of elements and 𝑓: 2𝑁 → ℝ≥0 be a set function

 Monotone – if ∀𝐴 ⊆ 𝐵 then 𝑓 𝐴 ≤ 𝑓 𝐵

 Marginal value – for every 𝐴, 𝐵 ⊆ 𝑁 we define as

𝑓𝐴 𝐵 = 𝑓 𝐴 ∪ 𝐵 − 𝑓(𝐴)

 Submodular – if for any 𝐴 ⊆ 𝐵 ⊆ 𝑁, 𝑒 ∈ 𝑁 ∖ 𝐵

𝑓𝐴 𝑒 ≥ 𝑓𝐵 𝑒



Submodular function examples

 Coverage function (also monotone)

 𝐴 = ∅, 𝐵 = 𝑏

 Other examples: cut (non monotone), rank (monotone)
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Multilinear extension

 The multilinear extension 𝐹: 0,1 𝑁 → ℝ≥0 of a 𝑓:

 𝐹 Ԧ𝑥 = 𝐸 𝑓 𝑇 , where 𝑇~ Ԧ𝑥 (𝑖 ∈ 𝑇 w.p. 𝑥𝑖)

 𝐹 𝟏𝑇 = 𝑓 𝑇

 Extends to continuous domain

 Continuous greedy can find Ԧ𝑥 ∈ 𝑃 such that 𝐹 Ԧ𝑥 ≥ 1 −
1

𝑒
− 𝜖 ⋅ 𝑂𝑃𝑇

 𝑃 is the relaxed polytope (describing the constraints)



Multiple Knapsack problem (MKP)

 Input:

 A set of items 𝐼 with

 weight 𝑤𝑖

 profit 𝑝𝑖 for each 𝑖 ∈ 𝐼

 𝐼 = 𝑛

 A set of bins 𝐵 with 

 capacity 𝑊𝑏 for each 𝑏 ∈ 𝐵

 𝐵 = 𝑚



Multiple Knapsack problem (MKP)

 Output:

 Feasible set T ⊆ 𝐼 for which there exists an assignment 𝐴 = (𝐴1, … , 𝐴𝑚)

 σ𝑖∈𝐴𝑏
𝑤𝑖 ≤ 𝑊𝑏 for all 𝑏 ∈ 𝐵

 𝑏∈𝐵𝐴𝑏ڂ = 𝑇

 Goal:

 Find feasible 𝑇 which maximizes σ𝑖∈𝑇 𝑝𝑖
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Monotone Submodular MKP (SMKP)

 Input:

 MKP constraint:

 Set of items 𝐼 with weights 𝑤𝑖

 Set of bins 𝐵 with capacities 𝑊𝑏

 Monotone submodular objective function 𝑓: 2𝐼 → ℝ≥0

 Output:

 Feasible set T ⊆ 𝐼 with assignment 𝐴

 Goal:

 Find feasible set 𝑇 which maximizes 𝑓(𝑇)



Our Results

 A random polynomial time (1 −
1

𝑒
− 𝜖)-approximation algorithm for 

Monotone SMKP for any 𝜖 > 0.

 Known hardness – cannot be approximated within (1 −
1

𝑒
+ 𝜖)

 follows hardness subject to cardinality constraint

 in the oracle model – [Nemhauser, Wolsey. 1978]

 unless 𝑃 ≠ 𝑁𝑃 for coverage functions – [Feige. 1998]



Related work

 1 −
1

𝑒
-approximation for constant number of bins – [Sviridenko. 2003]

 1 −
1

𝑒
− 𝜖 -approximation for multidimensional knapsack (for constant 

dimension) – [Kulik, Shachnai, Tamir. 2009]

 Deterministic 1 −
1

𝑒
− 𝜖 -approximation for Monotone SMKP for uniform bin 

capacity – [Sun, Zhang, Zhang. 2020]

 Randomized 1 −
1

𝑒
− 𝜖 -approximation for restricted instances of 

Monotone SMKP (improved later for general instances)

 Parallel work to ours



Uniform SMKP

 A special case of SMKP: the Uniform SMKP 

 for each pair of bins 𝑏1, 𝑏2 it holds that 𝑊𝑏1 = 𝑊𝑏2

 for simplicity assume 𝑊𝑏 = 1 for all 𝑏 ∈ 𝐵

 For constant 𝜇 > 0, split 𝐼 to sets 𝐿, 𝑆 of large and small items

 if 𝑤𝑖 ≥ 𝜇, item 𝑖 is said to be large

 else, 𝑖 is said to be small

 Configuration 𝑐 ⊆ 𝐿 is a set of large items s.t. σ𝑖∈𝑐𝑤𝑖 ≤ 1

 𝑐 ≤ 𝜇−1

 Let 𝐶 be the set of configurations, then C ≤ 𝑛𝜇
−1



Relaxation

 New set of items 𝐸 = 𝑒 ⊆ 𝐼 𝑒 ∈ 𝐶 𝑜𝑟 𝑒 = 𝑖 ⊆ 𝑆

 At most one “maximal” configuration is assigned to each bin

 Swap all bin constraints by a two dimensional “bin”:

 The bin (solution) contains at most 𝑚 configurations

 The total weight of items and configurations is 𝑚

 New objective function 𝑔: 2𝐸 → ℝ≥0 defined as 𝑔 𝑇 = 𝑓(ڂ𝑒∈𝑇 𝑒)

 maintains monotonicity and submodularity



Algorithm

 Phase 1

 Solve using continuous greedy (w.r.t. multilinear extension), get solution Ԧ𝑥

 Select random set 𝑇~ Ԧ𝑥

 If 𝑇 violates one of the two constraints, return an empty solution

 Phase 2

 Assign each configuration 𝑐 ∈ 𝑇 to a different bin

 Assign small items in 𝑇 using First-Fit (add bins as necessary)

 Discard worst bins



Analysis – Phase 1

 Due to guarantees of the continuous greedy and the multilinear 

extension

E 𝑓 𝑇 ≥ 1 −
1

𝑒
− 𝜖 ⋅ 𝑂𝑃𝑇

 What is the probability that 𝑇 violates a constraint?

 Chernoff bounds yields Pr T violates a const𝑟𝑎𝑖𝑛𝑡 ≤ 𝑒𝑂 −𝜇2𝑚

 We lose a factor of 1 − 𝑒𝑂 −𝜇2𝑚



Analysis – Phase 2

 What is the loss due to discarded bins/items?

 Once First-Fit finishes bins are almost full

 the size of items is at most 𝜇

 free capacity in all but one bin is at most 𝜇

 assigned weight to added bins is at most 𝜇 ⋅ 𝑚

 at most 𝑂 𝜇2 ⋅ 𝑚 bins were added



𝑂 𝜇2⋅

1+𝑂 𝜇2⋅
of the bins are discarded

 Final approximation - 1 −
1

𝑒
− 𝜖 − 𝑒𝑂 −𝜇2𝑚 − 𝑂 𝜇 ⋅ 𝑂𝑃𝑇



Observations

 For some 𝜖′ = 𝜖 + 𝑒𝑂 −𝜇2𝑚 + 𝑂 𝜇 we get the desired ratio

 Larger values of 𝑚 lead to better approximation

 Small bid assumption

 How well does the algorithm perform on general bin capacities?



SMKP

 Block: a set of bins 𝐾 is called a block if ∀𝑏1, 𝑏2 ∈ 𝐾,𝑊𝑏1 = 𝑊𝑏2

 Let 𝐵 = 𝐾1 ∪⋯∪ 𝐾𝑡 then the previous algorithm guarantees

1 −
1

𝑒
− 𝜖 −෍

𝑗=1

𝑡

𝑒𝑂 −𝜇2|𝐾𝑗| − 𝑂 𝜇 ⋅ 𝑂𝑃𝑇

 We might have many small blocks…

 Note - we can handle few small blocks (enumeration)

 Can we decrease the number of small blocks?



Structuring (by grouping)
What is the loss?



Structuring loss



Structuring loss

We lose -
𝑏𝑙𝑜𝑐𝑘 𝑠𝑖𝑧𝑒

#𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛𝑠



Structuring

𝐿0 𝐿1 𝐿2



N-leveled instances

 Structuring loss on every level: 1 −
1

𝑁

 Level size grows exponentially

 Small number of small blocks

 Rounding loss converges

Level #Blocks Block size #Bins

0 𝑁2 1 𝑁2

1 𝑁2 𝑁 𝑁3

2 𝑁2 𝑁2 𝑁4

3 𝑁2 𝑁3 𝑁5



Algorithm

 Enumerate – guess the assignment of a constant number of items

 Structure – adjust capacities to get an 𝑁-leveled instance

 Solve – using the continuous greedy algorithm (w.r.t. multilinear 

extension)

 Round – randomly according to the fractional solution

 Assign – to each block using First-Fit



Discussion

 Does the algorithm generalize to natural extensions?

 Multiple – multiple knapsacks

 Intersecting matroid constraints

 Non-monotone objective function

 Curvature (maximum decrease in marginal value)

 No! because we changed the objective function



Discussion

 𝑂(1) multiple knapsacks constraints

 Different configurations in different set of knapsacks

 Matroid constraints

 Matroid properties are lost due to configurations

 Cardinality constraint – non-uniform “size” for each element

 Non-monotone objective function

 If not monotone, submodularity isn’t maintained

 Curvature (maximum decrease in marginal value)

 Curvature of new objective function is always one



Extensions

 F, Kulik, Shachnai. "Tight Approximations for Modular and Submodular 

Optimization with d-Resource Multiple Knapsack Constraints." arXiv.

 “Insert” the configurations into the constraints

 Extends to:

 Multiple – multiple knapsacks constraints

 Matroid constraints

 Non-monotone (same approximation as single knapsack constraint)

 A 1 −
1

𝑒
− 𝑜 1 -approximation for Uniform SMKP



Thank you!


