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Correlation Clustering

 In the model of Correlation Clustering, we are given

 A graph 𝐺 = 𝑉, 𝐸

 The edges are labeled by a “+” or “–” sign: 𝐸 = 𝐸+ ∪ 𝐸−.

 A weight function 𝑤: 𝐸 → ℝ+.

 “+” = the nodes are similar. 

 “-” = the nodes are dissimilar.

 The goal: produce a clustering that agrees the most with the labels.

 Plus edges should reside within clusters.

 Minus edges should cross between clusters.



For example

 The input is a graph: 𝐺 = 𝑉, 𝐸+⨃𝐸− , with some edge weights 𝑤:𝐸 → ℝ+.
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For example

 The output, will be a clustering of the graph, 𝐶 = 𝐶1, 𝐶2, . . , 𝐶𝑘
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For example

 A perfect clustering does not always exist! For example, a ++- cycle can not 

be clustered in a way the agrees with all the edges.
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The agreements

 are edges that classified correctly: “+” edges within clusters, and “-” edges 

across clusters. 
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The disagreements

 are edges that classified incorrectly: “+” edges across clusters, and “-” within 

clusters. 
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What are the objectives?

 MaxAgree: The goal is to find a clustering that maximizes the number of 

agreements.

 MinDisagree: The goal is to find a clustering that minimizes the number of 

disagreements.

 MaxCorr: We aim to maximize the Correlation, which is the difference 

between the number of agreements and the number of disagreements.



Motivation for Correlation Clustering

Theory Practical applications

Captures classic graph cuts 

problems:

• Min s − t Cut

• Multiway Cut 

• Multicut

• Max-Cut

• etc.

• Image segmentation

• Cross-lingual link detection

• Clustering gene expression 

patterns

• Coreference resolution

• etc.



Previous work on Correlation Clustering

MaxAgree MinDisagree MaxCorr

General graphs 0.5, 0.75, 0.766 𝑂 log 𝑛 Ω Τ1 log 𝑛

Complete 

unweighted 

graphs

PTAS 4, 2.5, 2.06

Bipartite graphs PTAS 11, 4, 3

Restricted 

Number of 

clusters

For special cases For special cases



In our work

 We study the problem of MaxCorr on bipartite graphs. 

 We extend MaxCorr to restricted number of clusters - Max-k-Corr

 We present approximation algorithms for these problems.

 and show the relation to Grothendieck’s Inequality.



MaxCorr: previous work

 [Charikar-Wirth-04] studied the problem of maximizing a quadratic form 

(MaxQuad):

 Given a matrix 𝐵 ∈ ℝ𝑛×𝑛, find 𝑥 ∈ ±1 𝑛 such that the form 𝑥𝑇𝐵𝑥 is 

maximized. They presented an approximation algorithm with guarantee of 

Ω
1

log 𝑛
. (uses semi-definite program and random projections)

 Then, they presented an elegant reduction from MaxCorr.



The reduction from MaxCorr

 Given a graph 𝐺 with signed and weighted edges, we define:

𝐵𝑖,𝑗 = ൞

𝑤𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝐸+

−𝑤𝑖,𝑗 , (𝑖, 𝑗) ∈ 𝐸−

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Solve (approximately) max
𝑥∈ ±1 𝑛

𝑥𝑇𝐵𝑥 and let 𝑆 = {𝐶1, 𝐶2} be the clustering 

induced by the solution.

 Let 𝑇 = 𝑣1 , … , 𝑣𝑛 be the all-singletons clustering.

 Return the best out of 𝑆 and 𝑇.



The reduction from MaxCorr

 Charikar and Wirth showed that using this reduction, an 𝛼-approximation for 

maximizing a quadratic form, turns into an  
𝛼

2+𝛼
approximation for MaxCorr on 

general graphs.

 That is, they obtained a guarantee of Ω
1

log 𝑛
for the problem.



From General to Bipartite?

 The problem of maximizing a bipartite quadratic form, denote by Max-

BiQuad: 

Given a matrix 𝐴 ∈ 𝑅𝑛×𝑚, find vectors 𝑥 ∈ ±1 𝑛 , 𝑦 ∈ ±1 𝑚 that maximize 

the form 𝑥𝑇𝐴𝑦.

 Equivalent to Max-2-Corr on bipartite graphs.

 Solving Max-BiQuad, is typically achieved by rounding the natural semi-

definite program.



Grothendieck’s Inequality

 Grothendieck’s inequality [1953] states that there is a universal constant 𝐾𝐺
such that for every matrix 𝐴 ∈ ℝ𝑛×𝑚,

max

 Bounding 𝐾𝐺:

 Krivine’s algorithm shows that 𝐾𝐺 ≤
𝜋

2 ln 1+ 2
≈ 1.782.

 [Reeds-91] showed that 𝐾𝐺 ≥ 1.6769.



Applying CW’s reduction to bipartite 

graphs

 Krivine’s 0.5611-approximation for Max-BiQuad + CW’s reduction yields a 

0.219-approximation for MaxCorr on bipartite graphs.

 However, the lower bound on 𝐾𝐺 implies a barrier of 0.2296 using this 

approach, since the only known algorithm for Max-BiQuad is by rounding the 

natural semi-definite program.

 CW’s algorithm may output a huge number of clusters.

 Therefore, we depart from this approach.



Our results

 Theorem 1: There exists a polynomial-time 0.254-approximation algorithm 

for the problem of MaxCorr on bipartite graphs.

 Theorem 2: (Non formal) Max-k-Corr admits the following:

These extend Grothendieck’s inequality to large domains.

k 2 3 4 5 6 10 …. ∞

Approximation 0.5611 0.397 0.348 0.32 0.309 0.285 …. 0.254



The techniques

 We suggest a natural SDP relaxation for MaxCorr problem.

 We extend Krivine’s rounding method to more than two clusters.

 We adapt the above for the problem of Max-k-corr.



The SDP relaxation for MaxCorr

max 

𝑢,𝑣 ∈𝐸+

𝑤𝑢,𝑣 2𝑦𝑢 ⋅ 𝑦𝑣 − 1 + 

𝑢,𝑣 ∈𝐸−

𝑤𝑢,𝑣 1 − 2𝑦𝑢 ⋅ 𝑦𝑣

s. t. 𝑦𝑣 ⋅ 𝑦𝑣 = 1 ∀𝑣 ∈ 𝑉

𝑦𝑢 ⋅ 𝑦𝑣 ≥ 0 ∀𝑣, 𝑢 ∈ 𝑉



The Algorithm



The Algorithm

1. We are given a bipartite graph, with 

edges labeled by a plus or minus.
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The Algorithm

1. We are given a bipartite graph, with 
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2. Solve the SDP relaxation, and obtain a 

fractional solution 𝑦1, … , 𝑦𝑛. 
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The Algorithm

1. We are given a bipartite graph, with 

edges labeled by a plus or minus.

2. Solve the SDP relaxation, and obtain a 

fractional solution 𝑦1, … , 𝑦𝑛.

3. Transform the vectors to a new set of 

unit vectors 𝑦1, … , 𝑦𝑛. The transformation 

is based on the bipartite structure of the 

graph.

4. Draw a unit vector, uniformly at random, 

that splits the hypersphere into two 

pieces.

5. Pick one of the pieces at random, and 

split it with another random hyperplane.

6. The output is the induced clustering by 

the three pieces.



The analysis of the algorithm

 For every edge 𝑢, 𝑣 ∈ 𝐸, we denote by 𝑋𝑢,𝑣 the random variable that 

represent the contribution of the 𝑢, 𝑣 to the solution.  (𝑋𝑢,𝑣 ∈ ±𝑤𝑢,𝑣 )

 We denote the contribution of 𝑢, 𝑣 ∈ 𝐸 to the SDP fractional solution by 𝑍𝑢,𝑣.

 If we have that for absolute constant 𝑐 > 0

𝐸 𝑋𝑢,𝑣
𝑍𝑢,𝑣

≥ 𝑐

Then we get a 𝑐-approximation for the problem.

 Problem: These values may be negative!



 Solution:

 We transform the vectors 𝑦𝑢 𝑢∈𝑉, to a new set of vectors 𝑦𝑢 𝑢∈𝑉. 

 The new vectors will satisfy that 

𝐸 𝑋𝑢,𝑣 = 𝑐 ⋅ 𝑍𝑢,𝑣

for all 𝑢, 𝑣 ∈ 𝐸, for some absolute constant 𝑐 > 0.

 Then, we will get a 𝑐-approximation for our problem.



 First, let us calculate the expected contribution of each edge 𝑢, 𝑣 to the 

solution, 𝐸[𝑋𝑢,𝑣].

 It is widely known that if 𝑥, 𝑦 are unit vectors and 𝑧 is a random unit vector 

chosen uniformly on 𝑆𝑛−1 (the 𝑛-dimensional unit sphere), then

Pr 𝑠𝑖𝑔𝑛 𝑧 ⋅ 𝑥 ≠ 𝑠𝑖𝑔𝑛 𝑧 ⋅ 𝑦 =
𝜃𝑥,𝑦

𝜋

Where 𝜃𝑥,𝑦 is the angle between 𝑥 and 𝑦.



 We can calculate and see that

𝐸 𝑋𝑢,𝑣 =

𝑤𝑢,𝑣 1 − 3
෨𝜃𝑢,𝑣
𝜋

+
෨𝜃𝑢,𝑣
2

𝜋2
, 𝑢, 𝑣 ∈ 𝐸+

−𝑤𝑢,𝑣 1 − 3
෨𝜃𝑢,𝑣
𝜋

+
෨𝜃𝑢,𝑣
2

𝜋2
, 𝑢, 𝑣 ∈ 𝐸−

where ෨𝜃𝑢,𝑣 is the angle between the transformed vectors 𝑦𝑢, 𝑦𝑣.



 Recall that the contribution of each edge to the SDP solution is:

𝑍𝑢,𝑣 = ൝
𝑤𝑢,𝑣 2𝑦𝑢 ⋅ 𝑦𝑣 − 1 , 𝑢, 𝑣 ∈ 𝐸+

−𝑤𝑢,𝑣 2𝑦𝑢 ⋅ 𝑦𝑣 − 1 , 𝑢, 𝑣 ∈ 𝐸−

 And so our demand boils down to

1 − 3
𝜃𝑢,𝑣
𝜋

+
𝜃𝑢,𝑣
2

𝜋2
= 𝑐 ⋅ 2𝑦𝑢 ⋅ 𝑦𝑣 − 1



 Now, we can solve this equation and get the following solution:

෨𝜃𝑢,𝑣 =
1

2
3𝜋 − 𝜋 5 − 4𝑐 + 8𝑐(𝑦𝑢 ⋅ 𝑦𝑣)

Where 𝑦𝑢, 𝑦𝑣 are the original vectors.

 We define the following function 

𝑓 𝑥 = cos
1

2
3𝜋 − 𝜋 5 − 4𝑐 + 8𝑐𝑥



 We want to apply 𝑓 on the matrix 𝐴, where 𝐴𝑖,𝑗 = 𝑦𝑖 ⋅ 𝑦𝑗.

 Problems:

 We want the new matrix to be PSD.

 We want 1’s on the diagonal. (the transformed vectors will be unit vectors).

 We define the function 

𝑔 𝑥 = 

𝑘=0

∞

𝑓𝑘 𝑥
𝑘

where 𝑓𝑘 is the coefficient of 𝑥𝑘 in the Taylor expansion of 𝑓.



 The transformation will be:

 Now, we want to show that ሚ𝐴 is a PSD matrix.

𝑓 𝑥 = cos
1

2
3𝜋 − 𝜋 5 − 4𝑐 + 8𝑐𝑥 𝑔 𝑥 = 

𝑘=0

∞

𝑓𝑘 𝑥
𝑘



 We denote

𝑎𝑘 = 𝑓𝑘 , 𝑏𝑘 = 𝑠𝑖𝑔𝑛 𝑓𝑘 ⋅ 𝑓𝑘

 Assuming 𝑉 = (𝑉1, 𝑉2), we define a new set of vectors 𝑦𝑢
′
𝑢∈𝑉,

 If 𝑢 ∈ 𝑉1, then 

 𝑦𝑢
′ = 𝑎0 , 𝑎1𝑦𝑢 , 𝑎2 𝑦𝑢 ⊗𝑦𝑢 , 𝑎3 𝑦𝑢 ⊗𝑦𝑢 ⊗𝑦𝑢 , …

 If 𝑢 ∈ 𝑉2, then

 𝑦𝑢
′ = 𝑏0 , 𝑏1𝑦𝑢, 𝑏2 𝑦𝑢 ⊗𝑦𝑢 , 𝑏3 𝑦𝑢 ⊗𝑦𝑢 ⊗𝑦𝑢 , …

 The k-times tensor product 𝑦𝑢 ⊗⋯⊗𝑦𝑢 is in fact 𝑛𝑘 coordinates in 𝑦𝑢
′ .



 We denote the k-times tensor product 𝑣 ⊗⋯⊗ 𝑣 by 𝑣⊗𝑘.

 Known and useful fact:

 𝑢⊗𝑘 ⋅ 𝑣⊗𝑘 = 𝑢 ⋅ 𝑣 𝑘

for every two vectors 𝑢, 𝑣 ∈ ℝ𝑛 and 𝑘 ∈ ℕ. (exercise)

 If 𝑢, 𝑣 are in different sides of 𝑉, then

𝑦𝑢
′ ⋅ 𝑦𝑣

′ = 

𝑘=0

∞

𝑎𝑘𝑏𝑘 𝑦𝑢
⊗𝑘 ⋅ 𝑦𝑣

⊗𝑘 = 

𝑘=0

∞

𝑓𝑘 𝑦𝑢 ⋅ 𝑦𝑣
𝑘 = 𝑓(𝑦𝑢 ⋅ 𝑦𝑣)

 And If 𝑢, 𝑣 are in the same side of 𝑉 (w.l.o.g 𝑉1), then

𝑦𝑢
′ ⋅ 𝑦𝑣

′ = 

𝑘=0

∞

𝑎𝑘
2 𝑦𝑢

⊗𝑘 ⋅ 𝑦𝑣
⊗𝑘 = 

𝑘=0

∞

|𝑓𝑘| 𝑦𝑢 ⋅ 𝑦𝑣
𝑘 = 𝑔(𝑦𝑢 ⋅ 𝑦𝑣)

 Note that in the analysis we only care for the edges 𝑢, 𝑣 ∈ 𝐸, and so 𝑢, 𝑣 must be on different 

sides.



 Now we only have to show that the new vectors remain unit vectors.

 That is, we want to show that 𝑦𝑢
′ ⋅ 𝑦𝑢

′ = 1 for all 𝑢 ∈ 𝑉. Indeed,

𝑦𝑢
′ ⋅ 𝑦𝑢

′ = 

𝑘=0

∞

𝑓𝑘 𝑦𝑢 ⋅ 𝑦𝑢
𝑘 = 𝑔 𝑦𝑢 ⋅ 𝑦𝑢 = 𝑔 1

 What is 𝑔 1 ?

 It is quite technical, but one can show that

𝑔 𝑥 = 𝑓 −𝑥 − 2𝑓0 + 2𝑓1𝑥 − 2𝑓2𝑥
2

 𝑔 1 depends only on 𝑐. Therefore, if 𝑐 is the solution for 𝑔 1 = 1, we are done.

 The solution is 𝑐 ≈ 0.254, and so is the approximation factor.

 This completes the proof.



 More

 The above algorithm can be improved slightly:

 Instead of just splitting into 3 clusters, we randomly chose between 2 and 4 clusters.

 The 3 clusters algorithm, is like clustering to 2 clusters w.p
1

2
or 4 clusters w.p

1

2
(exercise )

 If we chose to cluster into 2 clusters w.p. 𝑝 = 0.49 or 4 clusters w.p. 1 − 𝑝, we get a 0.2551-

approximation.

 Which is very close to the simple three clusters algorithm.

 Will more clusters help?



Extending to Max-k-Corr

 We define an SDP relaxation, which will depend on maximal number of 

clusters - 𝑘.

 We use a similar approach in the rounding algorithm and the analysis.



Questions?



Thank you!


