The Metric Relaxation for 0-Extension Admits an $\Omega\left(\log ^{2 / 3} k\right)$ Gap

Nitzan Tur

Joint work with: Roy Schwartz

Problem Definition

Problem Definition

Input:

- $\mathcal{G}=(V, E)$ equipped with $w: E \rightarrow \mathbb{R}^{+}$.

Problem Definition

Input:

- $\mathcal{G}=(V, E)$ equipped with $w: E \rightarrow \mathbb{R}^{+}$.
- $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ terminals.

Problem Definition

Input:

- $\mathcal{G}=(V, E)$ equipped with $w: E \rightarrow \mathbb{R}^{+}$.
- $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ terminals.
- $D: T \times T \rightarrow \mathbb{R}^{+}$a semi-metric.

Problem Definition

Input:

- $\mathcal{G}=(V, E)$ equipped with $w: E \rightarrow \mathbb{R}^{+}$.
- $T=\left\{t_{1}, \ldots, t_{k}\right\} \subseteq V$ terminals.
- $D: T \times T \rightarrow \mathbb{R}^{+}$a semi-metric.

Goal: Find $f: V \rightarrow T$, identity on T, minimizing:

$$
\sum_{(u, v) \in E} w_{e} \cdot D(f(u), f(v))
$$

The Metric Extension Relaxation

A solution f :
(1) Extends D from T to V.
(2) Satisfies: $\min _{i=1}^{k}\left\{D\left(u, t_{i}\right)\right\}=0, \forall u \in V$.

The Metric Extension Relaxation

A solution f :
(1) Extends D from T to V.
(2) Satisfies: $\min _{i=1}^{k}\left\{D\left(u, t_{i}\right)\right\}=0, \forall u \in V$.

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

The Metric Extension Relaxation

A solution f :
(1) Extends D from T to V.
(2) Satisfies: $\min _{i=1}^{k}\left\{D\left(u, t_{i}\right)\right\}=0, \forall u \in V$.

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

$$
\begin{array}{rll}
(M E T) \quad \min & \sum_{e=(u, v) \in E} w_{e} \cdot \delta(u, v) & \\
\text { s.t. } & (V, \delta) \text { is a semi-metric space } & \\
& \delta\left(t_{i}, t_{j}\right)=D\left(t_{i}, t_{j}\right) & \forall t_{i}, t_{j} \in T, i \neq j \tag{2}
\end{array}
$$

Known Results - Upper Bounds

$O(\log (k)) \quad$ [Călinsecu-Karloff-Rabani-05]
$O\left(\frac{\log (k)}{\log \log (k)}\right)$
[Fakcharoenphol-Harrelson-Rao-Talwar-03] $\}$
round (MET)

Known Results - Upper Bounds

$O(\log (k)) \quad$ [Călinsecu-Karloff-Rabani-05]
$O\left(\frac{\log (k)}{\log \log (k)}\right) \quad$ [Fakcharoenphol-Harrelson-Rao-Talwar-03] $\}$

Above algorithms consist of two steps:
(1) Select "scale" for each vertex.
(2) Decompose the metric δ in each scale.

Known Results - Lower Bounds

(MET) admits an integrality gap of $\Omega(\sqrt{\log k})$ [Călinsecu-Karloff-Rabani-05].

Known Results - Lower Bounds

(MET) admits an integrality gap of $\Omega(\sqrt{\log k})$ [Călinsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_{k}.

Known Results - Lower Bounds

(MET) admits an integrality gap of $\Omega(\sqrt{\log k})$ [Călinsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_{k}.
- At least as strong as (MET).

Known Results - Lower Bounds

(MET) admits an integrality gap of $\Omega(\sqrt{\log k})$ [Călinsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_{k}.
- At least as strong as (MET).
- Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:
integrality gap of $\alpha \Rightarrow \alpha$-hardness.

Known Results - Lower Bounds

(MET) admits an integrality gap of $\Omega(\sqrt{\log k})$ [Călinsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_{k}.
- At least as strong as (MET).
- Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:
integrality gap of $\alpha \Rightarrow \alpha$-hardness.
- Admits integrality gap of $\Omega(\sqrt{\log k})$ [Karloff-Khot-Mehta-Rabani-09].

Known Results - Summary

Comments:

(1) Known algorithms do not know how to exploit earthmover metrics.

Known Results - Summary

Comments:

(1) Known algorithms do not know how to exploit earthmover metrics.
(2) $O(\sqrt{\log k})$ barrier for designing and analyzing gap instances.

Known Results - Summary

Comments:

(1) Known algorithms do not know how to exploit earthmover metrics.
(2) $O(\sqrt{\log k})$ barrier for designing and analyzing gap instances.

Question: bridge the gap between $O\left(\frac{\log (k)}{\log \log (k)}\right)$ and $\Omega(\sqrt{\log k})$ for $(M E T)$?

Our Results

Theorem [Schwartz-T-20]

For every $k,(M E T)$ admits an integrality gap of $\Omega\left(\log ^{2 / 3}(k)\right)$ for 0 -Extension.

Our Results

Theorem [Schwartz-T-20]

For every $k,(M E T)$ admits an integrality gap of $\Omega\left(\log ^{2 / 3}(k)\right)$ for 0 -Extension.

Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Graph Extensions

Definition

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.
- inter-cloud edges $\left(g_{i}, g_{j}\right) \in E_{G}$: uniform random matching.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.
- inter-cloud edges $\left(g_{i}, g_{j}\right) \in E_{G}$: uniform random matching.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.
- inter-cloud edges $\left(g_{i}, g_{j}\right) \in E_{G}$: uniform random matching.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.
- inter-cloud edges $\left(g_{i}, g_{j}\right) \in E_{G}$: uniform random matching.

Definition

Given $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right), \operatorname{Ext}(G, H)$ is a distribution over graphs:

Vertices:

- $V_{G} \times V_{H}$.
- $\left\{(g, h): h \in V_{H}\right\}$ is g 's cloud.

Edges:

- intra-cloud edges are E_{H}.
- inter-cloud edges $\left(g_{i}, g_{j}\right) \in E_{G}$: uniform random matching.

Graph Extensions

Comments:

Graph Extensions

Comments:

(1) Naturally captures edge lengths:

$$
\left\{\ell_{H}(e)\right\}_{e \in E_{H}},\left\{\ell_{G}(e)\right\}_{e \in E_{G}} \quad \Rightarrow \quad \ell(e)= \begin{cases}\ell_{H}(e) & \text { (intra-cloud) } \\ \ell_{G}(e) & \text { (inter-cloud) }\end{cases}
$$

Graph Extensions

Comments:

(1) Naturally captures edge lengths:

$$
\left\{\ell_{H}(e)\right\}_{e \in E_{H}},\left\{\ell_{G}(e)\right\}_{e \in E_{G}} \quad \Rightarrow \quad \ell(e)= \begin{cases}\ell_{H}(e) & \text { (intra-cloud) } \\ \ell_{G}(e) & \text { (inter-cloud) }\end{cases}
$$

(2) H has no edges \Rightarrow graph extensions coincide with lifts of graphs.

Graph Extensions

Comments:

(1) Naturally captures edge lengths:

$$
\left\{\ell_{H}(e)\right\}_{e \in E_{H}},\left\{\ell_{G}(e)\right\}_{e \in E_{G}} \quad \Rightarrow \quad \ell(e)= \begin{cases}\ell_{H}(e) & \text { (intra-cloud) } \\ \ell_{G}(e) & \text { (inter-cloud) }\end{cases}
$$

(2) H has no edges \Rightarrow graph extensions coincide with lifts of graphs.
(3) Relates to group extensions:
G and H are Cayley graphs and K is a group extension of G by H \Downarrow
K's Cayley graph is in the support of $\operatorname{Ext}(G, H)$

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(0) f preserves some topological properties of G.

What is a Split?

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(f preserves some topological properties of G.

Notes:

- Need to quantify most and close.
- Captures split extensions of groups.

The Instance

Instance Definition

$X \sim \operatorname{Ext}(G, H)$ where:
(1) G and H are constant degree high girth expanders on n vertices.
(2) $\ell_{H}(e) \equiv \log ^{1 / 3}(n)$ and $\ell_{G}(e) \equiv \log ^{2 / 3}(n)$.

Instance Definition

$X \sim \operatorname{Ext}(G, H)$ where:
(1) G and H are constant degree high girth expanders on n vertices.
(2) $\ell_{H}(e) \equiv \log ^{1 / 3}(n)$ and $\ell_{G}(e) \equiv \log ^{2 / 3}(n)$.

$$
X \sim E x t(G, H)
$$

Instance Definition

$X \sim \operatorname{Ext}(G, H)$ where:
(1) G and H are constant degree high girth expanders on n vertices.
(2) $\ell_{H}(e) \equiv \log ^{1 / 3}(n)$ and $\ell_{G}(e) \equiv \log ^{2 / 3}(n)$.

$X \sim \operatorname{Ext}(G, H)$

$T=V_{X}$

Instance Definition

$X \sim \operatorname{Ext}(G, H)$ where:
(1) G and H are constant degree high girth expanders on n vertices.
(2) $\ell_{H}(e) \equiv \log ^{1 / 3}(n)$ and $\ell_{G}(e) \equiv \log ^{2 / 3}(n)$.

Instance Definition

$X \sim \operatorname{Ext}(G, H)$ where:
(1) G and H are constant degree high girth expanders on n vertices.
(2) $\ell_{H}(e) \equiv \log ^{1 / 3}(n)$ and $\ell_{G}(e) \equiv \log ^{2 / 3}(n)$.

Instance Definition (cont.)

\mathcal{G} and T are defined, what remains?

Instance Definition (cont.)

\mathcal{G} and T are defined, what remains?

Instance Definition (cont.)

\mathcal{G} and T are defined, what remains?

- (T, D) shortest path metric on \mathcal{G}.

Instance Definition (cont.)

\mathcal{G} and T are defined, what remains?

- (T, D) shortest path metric on \mathcal{G}.
- Weights w are inverse of length.

The Fractional Solution

- Our construction naturally gives a solution to (MET).

The Fractional Solution

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.

The Fractional Solution

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.
- There are $\Theta\left(n^{2}\right)$ edges in the instance.

The Fractional Solution

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.
- There are $\Theta\left(n^{2}\right)$ edges in the instance.
- $\Theta\left(n^{2}\right)$ in total.

Split

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Split

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".
- Assume we have a small gap $O\left(\varepsilon^{2} \log ^{2 / 3}(n)\right)$:

$$
f: V_{X} \rightarrow T \text { costs } O\left(\varepsilon^{2} \log ^{2 / 3}(n) \cdot n^{2}\right)
$$

- At most εn^{2} edges cost more than $\varepsilon \log ^{2 / 3}(n)$.

Split

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".
- Assume we have a small gap $O\left(\varepsilon^{2} \log ^{2 / 3}(n)\right)$:

$$
f: V_{X} \rightarrow T \text { costs } O\left(\varepsilon^{2} \log ^{2 / 3}(n) \cdot n^{2}\right)
$$

- At most εn^{2} edges cost more than $\varepsilon \log ^{2 / 3}(n)$.

Conclusion: $\delta(f(u), f(v)) \leq \varepsilon \log ^{2 / 3}(n) \delta(u, v)$ for $1-\varepsilon$ of the edges.

Split - Existence of Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

Split - Existence of Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Distance between terminals $\geq L=\log (n)$.
- Intra-cloud neighbors distance is $\log ^{1 / 3}(n)$.

Split - Existence of Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Distance between terminals $\geq L=\log (n)$.
- Intra-cloud neighbors distance is $\log ^{1 / 3}(n)$.
- Most intra-cloud neighbors are assigned to the same terminal.
- H is an expander.

Split - Existence of Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Distance between terminals $\geq L=\log (n)$.
- Intra-cloud neighbors distance is $\log ^{1 / 3}(n)$.
- Most intra-cloud neighbors are assigned to the same terminal.
- H is an expander.

Most clouds have a consensus and this consensus is the representative.

Split - Representatives are Close

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

Split - Representatives are Close

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Blue edges length is $\log (n)$.
- Red edges (inter-cloud) length is $\log ^{2 / 3}(n)$.

Split - Representatives are Close

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Blue edges length is $\log (n)$.
- Red edges (inter-cloud) length is $\log ^{2 / 3}(n)$.

Cloud of $f(g)$ is $\underbrace{\varepsilon \log ^{2 / 3}(n)}_{\text {gap }} \cdot \log (n) / \log ^{2 / 3}(n)=\varepsilon \log (n)$ hops away in G from g.

Split - Neighboring Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

Split - Neighboring Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Red edges (inter-cloud) length is $\log ^{2 / 3}(n)$.
- Blue edges (intra-cloud) length is $\log ^{1 / 3}(n)$.

Split - Neighboring Representatives

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- Red edges (inter-cloud) length is $\log ^{2 / 3}(n)$.
- Blue edges (intra-cloud) length is $\log ^{1 / 3}(n)$.
$f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ are $\underbrace{\varepsilon \log ^{2 / 3}(n)}_{\text {gap }} \cdot \log ^{2 / 3}(n) / \log ^{1 / 3}(n)=\varepsilon \log (n)$ hops away in X.

Split - Topology

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

Split - Topology

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(0) f preserves some topological properties of G.

- We have $f: V_{G} \rightarrow V_{X}$, the representative map.
- Let $\pi: V_{X} \rightarrow V_{G}$ projection.

Split - Topology

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(0) f preserves some topological properties of G.

- We have $f: V_{G} \rightarrow V_{X}$, the representative map.
- Let $\pi: V_{X} \rightarrow V_{G}$ projection.

Topological Property: $\pi \circ f$ preserves the cycle structure of G.

Split - Topology

Intuition

Given $X \sim \operatorname{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_{X}$ where:
(1) g 's representative $f(g)$ is close to cloud g in G.
(2) most neighboring clouds $\left(g_{1}, g_{2}\right) \in E_{G}$ have close representatives in X.
(3) f preserves some topological properties of G.

- We have $f: V_{G} \rightarrow V_{X}$, the representative map.
- Let $\pi: V_{X} \rightarrow V_{G}$ projection.

Topological Property: $\pi \circ f$ preserves the cycle structure of G.

Algebraic topology intuition: $\pi \circ f$ is a homeomorphism \Rightarrow it preserves the first homology.

Cycle-Homeomorphism

- $\pi: V_{X} \rightarrow V_{G}$, the natural projection.
- $f: V_{G} \rightarrow V_{X}$, the representative map.
- f induces a map
$\bar{f}: E_{G} \rightarrow \mathbb{F}_{2}^{E_{X}}$, "the short path map"

We call f a Cycle-Homeomorphism if $\pi \circ \bar{f}: \mathbb{F}_{2}^{E_{G}} \rightarrow \mathbb{F}_{2}^{E_{G}}$ is identity on cycles.

Cycle-Homeomorphism

Let g_{1}, g_{2} neighboring clouds.

Cycle-Homeomorphism

Let g_{1}, g_{2} neighboring clouds.

Cycle-Homeomorphism

Let g_{1}, g_{2} neighboring clouds.

- g_{1}, g_{2} are 1 hops away.
- $\pi \circ \bar{f}\left(g_{1}\right), g_{1}$ are $\varepsilon \log (n)$ hops away.
- $\pi \circ \bar{f}\left(g_{2}\right), g_{2}$ are $\varepsilon \log (n)$ hops away.

Cycle-Homeomorphism

Let g_{1}, g_{2} neighboring clouds.

- g_{1}, g_{2} are 1 hops away.
- $\pi \circ \bar{f}\left(g_{1}\right), g_{1}$ are $\varepsilon \log (n)$ hops away.
- $\pi \circ \bar{f}\left(g_{2}\right), g_{2}$ are $\varepsilon \log (n)$ hops away.
- $\pi \circ \bar{f}\left(g_{2}\right), \pi \circ \bar{f}\left(g_{1}\right)$ are $\varepsilon \log (n)$ hops away.

Cycle-Homeomorphism

Let g_{1}, g_{2} neighboring clouds.

- g_{1}, g_{2} are 1 hops away.
- $\pi \circ \bar{f}\left(g_{1}\right), g_{1}$ are $\varepsilon \log (n)$ hops away.
- $\pi \circ \bar{f}\left(g_{2}\right), g_{2}$ are $\varepsilon \log (n)$ hops away.
- $\pi \circ \bar{f}\left(g_{2}\right), \pi \circ \bar{f}\left(g_{1}\right)$ are $\varepsilon \log (n)$ hops away.
- The cycle $g_{1} \rightarrow g_{2} \rightarrow \pi \circ \bar{f}\left(g_{2}\right) \rightarrow \pi \circ \bar{f}\left(g_{1}\right) \rightarrow g_{1}$ has $O(\varepsilon \log (n))$ edges.
- The girth of G has $\Omega(\log (n))$.
- This cycle is trivial.
- f is cycle-homeomorphism.

Splits (probably) Do Not Exist

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split"
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split"
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $\left|V_{G}\right|$ "variables" and $\left|E_{G}\right|$ "constraints".

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split"
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $\left|V_{G}\right|$ "variables" and $\left|E_{G}\right|$ "constraints".
- Each variable has " n " possibilities.

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split"
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $\left|V_{G}\right|$ "variables" and $\left|E_{G}\right|$ "constraints".
- Each variable has " n " possibilities.
- Each constraint holds with probability of " $1 / n$ ".

Splits (probably) Do Not Exist

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split"
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $\left|V_{G}\right|$ "variables" and $\left|E_{G}\right|$ "constraints".
- Each variable has " n " possibilities.
- Each constraint holds with probability of " $1 / n$ ".
- If $\left|E_{G}\right| \geq 2\left|V_{G}\right|$, then split should not exist (via union bound).

Splits (probably) Do Not Exist (cont.)

Two issues:
(1) All requirements, e.g., "in" and "neighboring", hold approximately:

Splits (probably) Do Not Exist (cont.)

Two issues:
(1) All requirements, e.g., "in" and "neighboring", hold approximately:

- Each variable has $n^{1+\varepsilon}$ possibilities.
- Each constraint holds with probability of $1 / n^{1-\varepsilon}$.

Splits (probably) Do Not Exist (cont.)

Two issues:
(1) All requirements, e.g., "in" and "neighboring", hold approximately:

- Each variable has $n^{1+\varepsilon}$ possibilities.
- Each constraint holds with probability of $1 / n^{1-\varepsilon}$.
(2) The constraints are not probabilistically independent:

Splits (probably) Do Not Exist (cont.)

Two issues:
(1) All requirements, e.g., "in" and "neighboring", hold approximately:

- Each variable has $n^{1+\varepsilon}$ possibilities.
- Each constraint holds with probability of $1 / n^{1-\varepsilon}$.
(2) The constraints are not probabilistically independent:
- Define a suitable combinatorial structure that allows enough independence.
- Linearly independent (modulo 2) cycles imply probabilistic independence.

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:
number of certificates $\leq n^{(1+O(\varepsilon)) n}$

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

$$
\text { number of certificates } \leq n^{(1+O(\varepsilon)) n}
$$

- Provides enough (almost) independent constraints:

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

$$
\text { number of certificates } \leq n^{(1+O(\varepsilon)) n}
$$

- Provides enough (almost) independent constraints:
at least $\left|E_{G}\right|-\left|V_{G}\right|$ constraints each satisfied with probability $\leq n^{-(1-O(\varepsilon))}$

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

$$
\text { number of certificates } \leq n^{(1+O(\varepsilon)) n}
$$

- Provides enough (almost) independent constraints:
at least $\left|E_{G}\right|-\left|V_{G}\right|$ constraints each satisfied with probability $\leq n^{-(1-O(\varepsilon))}$

Conclusion: no split exists by union bound!

Certificates

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

$$
\text { number of certificates } \leq n^{(1+O(\varepsilon)) n}
$$

- Provides enough (almost) independent constraints:
at least $\left|E_{G}\right|-\left|V_{G}\right|$ constraints each satisfied with probability $\leq n^{-(1-O(\varepsilon))}$

Conclusion: no split exists by union bound!

A certificate encodes a "formal roadmap" of:
union of all shortest paths in X between $f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ for $\left(g_{1}, g_{2}\right) \in E_{G}$

Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:

Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
(1) Union of all shortest paths in X between $f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ for $\left(g_{1}, g_{2}\right) \in E_{G}$.

Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
(1) Union of all shortest paths in X between $f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ for $\left(g_{1}, g_{2}\right) \in E_{G}$.
(2) Contract all intra-cloud edges.

Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
(1) Union of all shortest paths in X between $f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ for $\left(g_{1}, g_{2}\right) \in E_{G}$.
(2) Contract all intra-cloud edges.
(Contract vertices of degree ≤ 2 that do not contain a representative.

Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
(1) Union of all shortest paths in X between $f\left(g_{1}\right)$ and $f\left(g_{2}\right)$ for $\left(g_{1}, g_{2}\right) \in E_{G}$.
(2) Contract all intra-cloud edges.
(Contract vertices of degree ≤ 2 that do not contain a representative.

A vertex of the above graph is an Inner Connected Component.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (d is its degree).

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (d is its degree).

Edges between components:

- Each edge is a path in X between components.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (d is its degree).

Edges between components:

- Each edge is a path in X between components.
- Each path has at most $\varepsilon \log (n)$ hops.

Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.
Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (d is its degree).

Edges between components:

- Each edge is a path in X between components.
- Each path has at most $\varepsilon \log (n)$ hops.
- Each edge contains $\left(d_{G}+d_{H}\right)^{\varepsilon \log (n)}=n^{O(\varepsilon)}$ "data".

Certificates - Bounding Probability

Observation

Scanning Inner Connected Components graph:
closing a cycle yields a constraint on a uniform random matching.

Certificates - Bounding Probability

Observation

Scanning Inner Connected Components graph:
closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.

Certificates - Bounding Probability

Observation

Scanning Inner Connected Components graph:
closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.

Certificates - Bounding Probability

Observation

Scanning Inner Connected Components graph:
closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.
- Each path closes a cycle "correctly" with probability of $\leq O\left(1 / n^{1-\varepsilon}\right)$.

Certificates - Bounding Probability

Observation

Scanning Inner Connected Components graph:
closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.
- Each path closes a cycle "correctly" with probability of $\leq O\left(1 / n^{1-\varepsilon}\right)$.
- Each closed cycle is correct "independently".

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

- $\operatorname{Pr}_{X \sim \operatorname{Ext}(G, H)}[$ certificate $]=n^{-\chi \cdot(1-O(\varepsilon))}$.

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

- $\operatorname{Pr}_{X \sim \operatorname{Ext}(G, H)}[$ certificate $]=n^{-\chi \cdot(1-O(\varepsilon))}$.
- f is a cycle-homeomorphism \Longrightarrow the cycles space of the Inner Connected Components graph is larger than the cycles space of G.

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

- $\operatorname{Pr}_{X \sim \operatorname{Ext}(G, H)}[$ certificate $]=n^{-\chi \cdot(1-O(\varepsilon))}$.
- f is a cycle-homeomorphism \Longrightarrow the cycles space of the Inner Connected Components graph is larger than the cycles space of G.
- $\chi \geq\left|E_{G}\right|-\left|V_{G}\right|=\left(\frac{d_{G}}{2}-1\right) n>n$.

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

- $\operatorname{Pr}_{\chi \sim \operatorname{Ext}(G, H)}[$ certificate $]=n^{-\chi \cdot(1-O(\varepsilon))}$.
- f is a cycle-homeomorphism \Longrightarrow the cycles space of the Inner Connected Components graph is larger than the cycles space of G.
- $\chi \geq\left|E_{G}\right|-\left|V_{G}\right|=\left(\frac{d_{G}}{2}-1\right) n>n$.

We are done by a union bound as:

$$
\underbrace{n^{-\chi \cdot(1-O(\varepsilon))}}_{\text {probability }} \cdot \underbrace{n^{(1+O(\varepsilon))}}_{\text {no. certificates }} \leq n^{-(\chi-n)(1-O(\varepsilon))} \ll 1
$$

Questions?

