The Metric Relaxation for 0-Extension Admits an

Q (IogQ/3 k) Gap

Nitzan Tur

Joint work with: Roy Schwartz

ErTm T TR



Problem Definition

EFTmETEE IRy



Problem Definition

Input:
e G=(V,E) equipped with w: E - R*.

EFTmETEE

Technion Dec'20 2/31



Problem Definition

Input:
e G=(V,E) equipped with w: E - R*.
o T={ty,...,t} € V terminals.

EFTmETEE

Technion Dec'20 2/31



Problem Definition

Input:
e G=(V,E) equipped with w: E - R*.
o T={ty,...,tc} SV terminals.
@ D: T xT—R"a semi-metric.

ErTm T

Technion Dec'20 2/31



Problem Definition

Input:
e G=(V,E) equipped with w: E - R*.
o T={ty,...,tc} SV terminals.
@ D: T xT—R"a semi-metric.

Goal: Find f:V — T, identity on T, minimizing:

Z we - D(f(u), f(v)).

(u,v)eE

ErTm T

Technion Dec’20



The Metric Extension Relaxation

A solution f:
@ Extends D from T to V.
Q Satisfies: min’_; {D(u,t;)} =0, Vue V.

ErTm T Ty



The Metric Extension Relaxation

A solution f:
@ Extends D from T to V.
Q Satisfies: min’_; {D(u,t;)} =0, Vue V.

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

ErTm T YT



The Metric Extension Relaxation

A solution f:
@ Extends D from T to V.
Q Satisfies: min’_; {D(u,t;)} =0, Vue V.

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

(MET)  min > we-d(u,v)

e=(u,v)eE
s.t. (V,0) is a semi-metric space (1)
o(ti, t;) = D(t, t;) Ve tieT,izj (2)

ErTm T YT



Known Results - Upper Bounds

O (log(k)) [C3linsecu-Karloff-Rabani-05]

} round (MET)

@) ( Iolgoi(gk()k) ) [Fakcharoenphol-Harrelson-Rao-Talwar-03]

ErTm T YT



Known Results - Upper Bounds

O (log(k)) [C3linsecu-Karloff-Rabani-05]

} round (MET)

@) ( Iolgoi(gk()k) ) [Fakcharoenphol-Harrelson-Rao-Talwar-03]

Above algorithms consist of two steps:
@ Select “scale” for each vertex.

@ Decompose the metric ¢ in each scale.

ErTm T STV



Known Results - Lower Bounds

(MET) admits an integrality gap of Q(+/log k) [C3linsecu-Karloff-Rabani-05].

EFTAm T YT



Known Results - Lower Bounds

(MET) admits an integrality gap of Q(+/log k) [C3linsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

@ Embeds vertices to Ay.

ErTm T Ty



Known Results - Lower Bounds

(MET) admits an integrality gap of Q(+/log k) [C3linsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:
@ Embeds vertices to Ay.
o At least as strong as (MET).

EFTmETEE TRy



Known Results - Lower Bounds

(MET) admits an integrality gap of Q(+/log k) [C3linsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:
@ Embeds vertices to Ay.
o At least as strong as (MET).
@ Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:

integrality gap of @ = a-hardness.

EFTmETEE TRy



Known Results - Lower Bounds

(MET) admits an integrality gap of Q(+/log k) [C3linsecu-Karloff-Rabani-05].

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:
@ Embeds vertices to Ay.
o At least as strong as (MET).
@ Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:

integrality gap of @ = a-hardness.

Admits integrality gap of Q(+/log k) [Karloff-Khot-Mehta-Rabani-09].

ErTAm T YT



Known Results - Summary

Comments:

@ Known algorithms do not know how to exploit earthmover metrics.

ErTm T TRy



Known Results - Summary

Comments:
@ Known algorithms do not know how to exploit earthmover metrics.
@ O(+/Tog k) barrier for designing and analyzing gap instances.

ErTm T TRy



Known Results - Summary

Comments:
@ Known algorithms do not know how to exploit earthmover metrics.
@ O(+/Tog k) barrier for designing and analyzing gap instances.

Question: bridge the gap between O(log’i(gk()k)) and Q(\/log k) for (MET)? J

ErTm e ISRy



Our Results

Theorem [Schwartz-T-20]

For every k, (MET) admits an integrality gap of Q(log” (k)) for 0-Extension.

ErTm T

Technion Dec'20 7/31



Our Results

Theorem [Schwartz-T-20]

For every k, (MET) admits an integrality gap of Q(log” (k)) for 0-Extension.

Proof Overview:
@ Construction of graph extensions.

@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

EFTm T T T



Graph Extensions

ErTm T e




Definition

EFTm T TRy



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

EFTm T TRy



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

hy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH.

hy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH.

hy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH-
H e {(g,h):heVy}is g's cloud.

hy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
hy ("] VG X VH.
hy
H @m o o {(g,h):heVy}is g's cloud.
hs
91

92
G < 93

93

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH-
By
H @m o o {(g,h):heVy}is g's cloud.
hs
o Edges:

9 @ intra-cloud edges are Ey.
G A 93

93

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ] VG X VH.
H ®h4 9 o {(g,h):heVy}is g's cloud.
hy
N Edges:

9: @ intra-cloud edges are Ep.
G ;‘< 93

93

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
hy o Vi x Vy.
H %m o e {(g,h):heVy}is g's cloud.
hy
o Edges:

9: @ intra-cloud edges are Ep.
¢ ;< 9 e inter-cloud edges (g;, gj) € Eg:

93

uniform random matching.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
hy o Vi x Vy.
H %m o e {(g,h):heVy}is g's cloud.
hy
o Edges:

9: @ intra-cloud edges are Ep.
¢ ;< 9 e inter-cloud edges (g;, gj) € Eg:

93

uniform random matching.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Definition

Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH.
e . 9 o {(g,h):heVy}isg's cloud.
s
N Edges:

9: @ intra-cloud edges are Ep.
G ;< 2 e inter-cloud edges (g;, gj) € Eg:

93

uniform random matching.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Definition

Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
h, ("] VG X VH.
e . 9 o {(g,h):heVy}isg's cloud.
s
N Edges:

9: @ intra-cloud edges are Ep.
G < 2 e inter-cloud edges (g;, gj) € Eg:

93

uniform random matching.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Given G = (Vg,Eg) and H = (Vy, Ey), Ext(G, H) is a distribution over graphs:

Vertices:
] VG X VH.
o {(g,h):heVy}is g's cloud.

Edges:
@ intra-cloud edges are Ep.

e inter-cloud edges (g;, gj) € Eg:

uniform random matching.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  9/31



Graph Extensions

Comments:

ErTm T Ty



Graph Extensions

Comments:

© Naturally captures edge lengths:

lh(e intra-cloud
(0 ety {le(@) et =  L(e) = { (e) (int )

lc(e) (inter-cloud)

EFTm T Ty



Graph Extensions

Comments:

© Naturally captures edge lengths:

ly(e) (intra-cloud)

{lr(€e)}ecEy: {lc(€)}eck, = l(e) :{

lc(e) (inter-cloud)

@ H has no edges = graph extensions coincide with lifts of graphs.

EFTm T Ty



Graph Extensions

Comments:

© Naturally captures edge lengths:
ly(e) (intra-cloud)

{lr(€e)}ecEy: {lc(€)}eck, = (e :{

lc(e) (inter-cloud)

@ H has no edges = graph extensions coincide with lifts of graphs.

© Relates to group extensions:

G and H are Cayley graphs and K is a group extension of G by H

U
K's Cayley graph is in the support of Ext(G, H)

EFTm T Ty



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

ErTm T Ty e



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

Intuition

Given X ~ Ext(G, H) a split assigns to most clouds g a representative
f(g) € Vx where:

ErTm T Ty e



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

Intuition

Given X ~ Ext(G, H) a split assigns to most clouds g a representative
f(g) € Vx where:

Q g's representative f(g) is close to cloud g in G.

ErTm T TRy



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

Intuition

Given X ~ Ext(G, H) a split assigns to most clouds g a representative
f(g) € Vx where:

Q g's representative f(g) is close to cloud g in G.

@ most neighboring clouds (g1,82) € Eg have close representatives in X.

ErTm T TRy



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

Intuition

Given X ~ Ext(G, H) a split assigns to most clouds g a representative
f(g) € Vx where:

Q g's representative f(g) is close to cloud g in G.

@ most neighboring clouds (g1,82) € Eg have close representatives in X.

© f preserves some topological properties of G.

ErTmETEE TRy



What is a Split?

Recall proof overview:
@ Small gap implies that graph extensions “split”.
@ Most graph extensions do not “split”.

Intuition

Given X ~ Ext(G, H) a split assigns to most clouds g a representative
f(g) € Vx where:

Q g's representative f(g) is close to cloud g in G.
@ most neighboring clouds (g1,82) € Eg have close representatives in X.

© f preserves some topological properties of G.

Notes:
@ Need to quantify most and close.

o Captures split extensions of groups.

ErTmETEE TRy



The Instance

ErTm T TRy



Instance Definition

X ~ Ext(G, H) where:
@ G and H are constant degree high girth expanders on n vertices.
Q@ (1(e) =log”(n) and lg(e) = log”(n).

ErTm T Ty e



Instance Definition

X ~ Ext(G, H) where:
@ G and H are constant degree high girth expanders on n vertices.
Q@ (1(e) =log”(n) and lg(e) = log”(n).

£ =log!/3(n)
£ = log?/3(n)

X~Ext(G,H)

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  13/31



Instance Definition

X ~ Ext(G, H) where:
@ G and H are constant degree high girth expanders on n vertices.
@ (y(e) =log”(n) and Lg(e) = log™(n).

£ =log!/3(n)
£ = log?/3(n)

4/) @
R
b‘\',

(SRS

e

X~Ext(G, H) T =Vy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  13/31



Instance Definition

X ~ Ext(G, H) where:
@ G and H are constant degree high girth expanders on n vertices.
@ (y(e) =log”(n) and Lg(e) = log™(n).

£ =log!/3(n)
£ = log?/3(n)

X~Ext(G,H)

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  13/31



Instance Definition

X ~ Ext(G, H) where:
@ G and H are constant degree high girth expanders on n vertices.
@ (y(e) =log”(n) and Lg(e) = log™(n).

£ =log!/3(n)

L = log(n)
£ = log?/3(n)

A\

X~Ext(G,H)

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  13/31



Instance Definition (cont.)

G and T are defined, what remains?

ErTm T T e



Instance Definition (co

G and T are defined, what remains?

€ =log"/3(n) L = log(n)

¢ =log?/*(n)/ PN
]

X~Ext(G,H) T=Vy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  14/31



Instance Definition (cont.

G and T are defined, what remains?

€ =log'/3(n) - L = log(n)
£=log?*(n)/ P\
Y

o (T,D) shortest path metric on G.

X~Ext(G,H) T=Vy

T T e



Instance Definition (cont.

G and T are defined, what remains?

€ =log'/3(n) - L = log(n)
£=log?*(n)/ P\
Y

o (T,D) shortest path metric on G.
o Weights w are inverse of length.

X~Ext(G,H) T=Vy

ErTmETEE T e



The Fractional Solution

@ Our construction naturally gives a solution to (MET).

ErTmETEE R Ty e



The Fractional Solution

@ Our construction naturally gives a solution to (MET).

@ Each edge costs 1.

ErTmETEE R Ty e



The Fractional Solution

@ Our construction naturally gives a solution to (MET).
@ Each edge costs 1.
@ There are ©(n?) edges in the instance.

ErTmETEE R Ty e



The Fractional Solution

Our construction naturally gives a solution to (MET).
Each edge costs 1.

There are ©(n?) edges in the instance.

©(n?) in total.

ErTAm T R Ty e



Recall Proof Overview:

)
@ Small gap implies that graph extensions “split”.
(]

R R TeY e



Recall Proof Overview:

Small gap implies that graph extensions “split”.

@ Assume we have a small gap O(<? Iog2/3(n)):
f:Vx — T costs O(c2log??(n) - n?).

o At most en? edges cost more than ¢ log?>(n).

R R TeY e



Recall Proof Overview:

Small gap implies that graph extensions “split”.

@ Assume we have a small gap O(<? Iog2/3(n)):
f:Vx — T costs O(c2log??(n) - n?).

o At most en? edges cost more than ¢ log?>(n).

Conclusion: §(f(u),f(v)) < elog?3(n)é(u,v) for 1-¢ of the edges. J

ErTm T LR TeY e



Split - Existence of Representatives

Given X ~ Ext(G, H) a split assigns to most clouds g a representative f(g) € Vx where:

o
2]
o

EFTmETEE T



Split - Existence of Representatives

Given X ~ Ext(G, H) a split assigns to most clouds g a representative f(g) € Vx where:

£=1log/3(n) L = log(n)
=g P PN 7
Y E—

X~Ext(G,H) T=Vx

Nitzan Tur

o Distance between terminals > L = log(n).

e Intra-cloud neighbors distance is log'/>(n).

Q Gap for 0-Extension Technion Dec’20 17 /31



Split - Existence of Representatives

Given X ~ Ext(G, H) a split assigns to most clouds g a representative f(g) € Vx where:

o
o
o

o Distance between terminals > L = log(n).
e Intra-cloud neighbors distance is log'/>(n).

@ Most intra-cloud neighbors are assigned to
the same terminal.

@ H is an expander.

X~Ext(G,H) T=Vx

Nitzan Tur Q Gap for 0-Extension Technion Dec’20 17 /31



Split - Existence of Representatives

Given X ~ Ext(G, H) a split assigns to most clouds g a representative f(g) € Vx where:

(1)
(2]
o
£ =log'/? L = log(n) H H
P — @ Distance between terminals > L = log(n).
™Y I

e Intra-cloud neighbors distance is log'/>(n).

@ Most intra-cloud neighbors are assigned to
the same terminal.

@ H is an expander.

X~Ext(G,H) T=Vy

Most clouds have a consensus and this consensus is the representative. J

Nitzan Tur Q Gap for 0-Extension Technion Dec’20 17 /31




Split - Representatives are Close

@ g's representative f(g) is close to cloud g in G.

ErTm T R TR



Split - Representatives are Close

@ g's representative f(g) is close to cloud g in G.
(2]
o

£ =log'/3(n)
£ =1log?/3(n),

\] L =log(n) I//\
Y N
//_3\—/ o Blue edges length is log(n).
< - /3 @ Red edges (inter-cloud) length is Iog2/3(n).

/ \

X~Ext(G,H) T=Vy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  18/31



Split - Representatives are Close

@ g's representative f(g) is close to cloud g in G.
(2]
o

£ =log'/3(n)
£ =log?3(n),

Y N
//w\—/ o Blue edges length is log(n).
< - /3 @ Red edges (inter-cloud) length is Iog2/3(n).

/ \

X~Ext(G,H) T=Vy

S —
gap

Cloud of f(g) is e log®3(n)-log(n)/log??(n) = clog(n) hops away in G from g. J

Nitzan Tur Q Gap for 0-Extension Technion Dec’20 18 /31



Split - Neighboring Representatives

@ most neighboring clouds (g1, 82) € Eg have close representatives in X.

ErTm T R ToY e



Split - Neighboring Representatives

@ most neighboring clouds (g1, 82) € Eg have close representatives in X.

o

o Red edges (inter-cloud) length is log®(n).
o Blue edges (intra-cloud) length is log*/3(n).

X~Ext(G,H) T=Vy

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  19/31



Split - Neighboring Representatives

@ most neighboring clouds (g1, 82) € Eg have close representatives in X.

o Red edges (inter-cloud) length is log®(n).
o Blue edges (intra-cloud) length is log"/>(n).

X~Ext(G,H) T=Vy

—_———
gap

f(g1) and f(g) are elog?3(n)-log?®(n)/log"?(n) = clog(n) hops away in X. J

Nitzan Tur Q Gap for 0-Extension Technion Dec’20 19/31



Split - Topology

© f preserves some topological properties of G.

ErTm T RSy



Split - Topology

© f preserves some topological properties of G.

o We have f: Vg — Vx, the representative map.
o Let m: Vx - Vi projection.

ErTm T RSy



Split - Topology

("]
(2]

© f preserves some topological properties of G.

o We have f: Vg — Vx, the representative map.
o Let m: Vx - Vi projection.

Topological Property: 7o f preserves the cycle structure of G. J

EFTm T STy



Split - Topology

("]
(2]

© f preserves some topological properties of G.

o We have f: Vg — Vx, the representative map.
o Let m: Vx - Vi projection.

Topological Property: 7o f preserves the cycle structure of G. J

Algebraic topology intuition: 7o f is a homeomorphism = it preserves the first
homology.

EFTm T STy



Cycle-Homeomorphism

7o f(g2)

B mo f(g3)
mo f(91) e m: Vx — Vg, the natural

projection.
o f: Vg — Vyx, the
representative map.

° iinduces a map
f:Eg— IF‘;X, "the short

/ path map”

o f(gs) o f(ga)
° 4

We call f a Cycle-Homeomorphism if 7o f : ]FEG - ]FQEG is identity on cycles.

Nitzan Tur Q Gap for 0-Extension Technion Dec'20  21/31



Cycle-Homeomorphism

Let g1, 8> neighboring clouds.

7o f(gz)

e f(g1)

ErTm T

Technion Dec'20 22/31



Cycle-Homeomorphism

Let g1, 8> neighboring clouds.

mo f(g2)
@ gi1,4» are 1 hops away.

e f(g1)

ErTm T

Technion Dec'20 22/31



Cycle-Homeomorphism

Let g1, g neighboring clouds.

o f(g2)
@ gi1,4» are 1 hops away.
) e mof(gy),g are elog(n) hops away.
mef(g) e mof(g2),& are clog(n) hops away.
92

ErTm T

Technion Dec’'20



Cycle-Homeomorphism

Let g1, g neighboring clouds.

o f(g2)
@ gi1,4» are 1 hops away.
) e mof(gy),g are elog(n) hops away.
mef(gy) e mof(g2),& are clog(n) hops away.
g2 e wof(gy),mof(gy) are elog(n) hops away.
g

ErTm T

Technion Dec’'20 22 /31



Cycle-Homeomorphism

Let g1, 8> neighboring clouds.

o f(g2)
@ gi1,4» are 1 hops away.
) e mof(gy),g are elog(n) hops away.
mef(g) e mof(g2),& are clog(n) hops away.
92

e wof(gy),mof(gy) are elog(n) hops away.

o The cycle g3 - g — mo f(g) » mof(g1) — g1 has O(clog(n)) edges.
@ The girth of G has Q(log(n)).
@ This cycle is trivial.

e f is cycle-homeomorphism.

ErTm T

Technion Dec'20 22/31



Splits (probably) Do Not Exist




Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

R RS e



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:

@ We need to choose a vertex “in” each cloud.

R RS e



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:
@ We need to choose a vertex “in” each cloud.

@ Neighboring clouds have “neighboring” representatives.

R RS e



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:
@ We need to choose a vertex “in” each cloud.
@ Neighboring clouds have “neighboring” representatives.
o We have | V| “variables” and |Eg| “constraints”.

R RS e



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:
@ We need to choose a vertex “in” each cloud.
@ Neighboring clouds have “neighboring” representatives.
o We have | V| “variables” and |Eg| “constraints”.
@ Each variable has “n" possibilities.

ErTm T e e



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:

@ We need to choose a vertex “in” each cloud.
Neighboring clouds have “neighboring” representatives.
We have |V(| “variables” and |Eg| “constraints”.

Each variable has “n" possibilities.

Each constraint holds with probability of “1/n".

EFTAm T RS



Splits (probably) Do Not Exist

Recall Proof Overview:

@ Most graph extensions do not “split”.

Informally:
@ We need to choose a vertex “in” each cloud.
Neighboring clouds have “neighboring” representatives.
We have |V(| “variables” and |Eg| “constraints”.
Each variable has “n" possibilities.
Each constraint holds with probability of “1/n".
If |Eg| > 2|V, then split should not exist (via union bound).

EFTm T RS e



Splits (probably) Do Not Exist (cont.)

Two issues:

@ All requirements, e.g., “in” and “neighboring”, hold approximately:

ErTm T e e



Splits (probably) Do Not Exist (cont.)

Two issues:

@ All requirements, e.g., “in” and “neighboring”, hold approximately:

o Each variable has n'*® possibilities.
o Each constraint holds with probability of 1/n

1-¢

ErTm T e e



Splits (probably) Do Not Exist (cont.)

Two issues:

@ All requirements, e.g., “in” and “neighboring”, hold approximately:

o Each variable has n'*® possibilities.
o Each constraint holds with probability of 1/n

1-¢

@ The constraints are not probabilistically independent:

ErTm T e e



Splits (probably) Do Not Exist (cont.)

Two issues:

@ All requirements, e.g., “in” and “neighboring”, hold approximately:

o Each variable has n'*® possibilities.
o Each constraint holds with probability of 1/n

1-¢
@ The constraints are not probabilistically independent:

e Define a suitable combinatorial structure that allows enough independence.
o Linearly independent (modulo 2) cycles imply probabilistic independence.

ErTm T e e



Certificates

A combinatorial structure that satisfies:

o Existence of split = existence of certificate.

EFTm T e ey e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

EFTm T e ey e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

number of certificates < n(1+0(e)n

EFTm T e ey e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

number of certificates < n(1+0(e)n

@ Provides enough (almost) independent constraints:

EFTm T e ey e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

number of certificates < n(1+0(e)n

@ Provides enough (almost) independent constraints:
at least |Eg| — | V| constraints each satisfied with probability < n~(:=0(=))

EFTm T e ey e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

number of certificates < n(1+0(e)n

@ Provides enough (almost) independent constraints:
at least |Eg| — | V| constraints each satisfied with probability < n~(:=0(=))

Conclusion: no split exists by union bound! )

ErTmETEE RS e



Certificates

A combinatorial structure that satisfies:
o Existence of split = existence of certificate.

@ There are not too many certificates:

number of certificates < n(1+0(e)n

@ Provides enough (almost) independent constraints:
at least |Eg| — | V| constraints each satisfied with probability < n~(:=0(=))

Conclusion: no split exists by union bound! )

A certificate encodes a “formal roadmap” of:

union of all shortest paths in X between f(g1) and f(g») for (g1,82) € Eg

ErTmETEE RS ey



Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:

R

Technion Dec'20 27 /31



Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:

@ Union of all shortest paths in X between f(g1) and f(g2) for (g1,82) € Eg.

ErTm T

Technion Dec'20 27 /31



Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
@ Union of all shortest paths in X between f(g1) and f(g2) for (g1,82) € Eg.
@ Contract all intra-cloud edges.

ErTm T

Technion Dec'20 27 /31



Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
@ Union of all shortest paths in X between f(g1) and f(g2) for (g1,82) € Eg.
@ Contract all intra-cloud edges.
© Contract vertices of degree < 2 that do not contain a representative.

ErTmETEE

Technion Dec'20 27 /31



Certificates - Inner Connected Components

A certificate's core is an Inner Connected Component graph:
@ Union of all shortest paths in X between f(g1) and f(g2) for (g1,82) € Eg.
@ Contract all intra-cloud edges.
© Contract vertices of degree < 2 that do not contain a representative.

A vertex of the above graph is an Inner Connected Component.

ErTm T

Technion Dec'20 27 /31



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

ErTmETEE R e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:

@ Each component is a connected sub-graph of a cloud.

ErTmETEE R e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:
@ Each component is a connected sub-graph of a cloud.
@ Each component has n® vertices of X.

ErTmETEE R e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:
@ Each component is a connected sub-graph of a cloud.
@ Each component has n® vertices of X.

o Each component has n° “data” (d is its degree).

ErTm T e e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:
@ Each component is a connected sub-graph of a cloud.
@ Each component has n® vertices of X.

o Each component has n° “data” (d is its degree).

Edges between components:

@ Each edge is a path in X between components.

ErTm T e e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:
@ Each component is a connected sub-graph of a cloud.
@ Each component has n® vertices of X.

o Each component has n° “data” (d is its degree).

Edges between components:
@ Each edge is a path in X between components.
@ Each path has at most ¢log(n) hops.

ErTmETEE R e



Certificates - How to Count?

Goal: upper bound the number of inner connected components graphs.

Components:
@ Each component is a connected sub-graph of a cloud.
@ Each component has n® vertices of X.

o Each component has n° “data” (d is its degree).

Edges between components:
@ Each edge is a path in X between components.
@ Each path has at most ¢log(n) hops.
o Each edge contains (dg + dy)°'°8(" = n9() “data”.

ErTmETEE e e



Certificates - Bounding Probability

Observation
Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

EFTm T R Ty



Certificates - Bounding Probability

Observation
Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

@ Remove a spanning tree.

EFTm T R Ty



Certificates - Bounding Probability

Observation
Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

@ Remove a spanning tree.

@ Remaining edges correspond to disjoint paths.

EFTm T R Ty



Certificates - Bounding Probability

Observation
Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

@ Remove a spanning tree.
@ Remaining edges correspond to disjoint paths.
e Each path closes a cycle “correctly” with probability of < O(1/n'~%).

EFTm T R Ty



Certificates - Bounding Probability

Observation
Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

@ Remove a spanning tree.
@ Remaining edges correspond to disjoint paths.
e Each path closes a cycle “correctly” with probability of < O(1/n'~%).

@ Each closed cycle is correct "independently”.

EFTm T R Ty



Certificates - Bounding Probability (cont.)

Let x be the Euler characteristic of the Inner Connected Components graph:

ErTm T RS Ty



Certificates - Bounding Probability (cont.)

Let x be the Euler characteristic of the Inner Connected Components graph:

® Prx.gx(c,n) [certificate] = nx(1-0()

ErTm T RS Ty



Certificates - Bounding Probability (cont.)

Let x be the Euler characteristic of the Inner Connected Components graph:

® Prx.gx(c,n) [certificate] = nx(1-0()

@ f is a cycle-homeomorphism == the cycles space of the Inner Connected
Components graph is larger than the cycles space of G.

ErTm T RS Ty



Certificates - Bounding Probability (cont.)

Let x be the Euler characteristic of the Inner Connected Components graph:

o Prx.eq(c ny [certificate] = n~x(1-0()),
@ f is a cycle-homeomorphism == the cycles space of the Inner Connected
Components graph is larger than the cycles space of G.

° XZ|E(:;|—|VG|=(%G— )n>n.

ErTm T RS Ty



Certificates - Bounding Probability (cont.)

Let x be the Euler characteristic of the Inner Connected Components graph:

o Prx.eq(c ny [certificate] = n~x(1-0()),
@ f is a cycle-homeomorphism == the cycles space of the Inner Connected
Components graph is larger than the cycles space of G.

° X2|E(;|—|Vg|:(d—2‘;— )n>n.

We are done by a union bound as:
nx(1-0(€) . j(1+0(e)) ¢ p=(x=m(1-0(e)) 1

——— e —
probability no. certificates

ErTm T e

30/31



Questions?

ErTm T e




	Preliminaries
	Known Results
	Our Result
	Graph Extensions
	The Instance
	Splits probably do not exist

