The Metric Relaxation for 0-Extension Admits an $\Omega\left(\log^{2/3}k\right)$ Gap

Nitzan Tur

Joint work with: Roy Schwartz

Nitzan Tur

Problem Definition

Ni	tzan	i Ti	ur

メロト メロト メヨトメ

• $\mathcal{G} = (V, E)$ equipped with $w : E \to \mathbb{R}^+$.

メロト メロト メヨトメ

- $\mathcal{G} = (V, E)$ equipped with $w : E \to \mathbb{R}^+$.
- $T = \{t_1, \ldots, t_k\} \subseteq V$ terminals.

メロト メロト メヨトメ

- $\mathcal{G} = (V, E)$ equipped with $w : E \to \mathbb{R}^+$.
- $T = \{t_1, \ldots, t_k\} \subseteq V$ terminals.
- $D: T \times T \to \mathbb{R}^+$ a semi-metric.

イロト イヨト イヨト イ

- $\mathcal{G} = (V, E)$ equipped with $w : E \to \mathbb{R}^+$.
- $T = \{t_1, \ldots, t_k\} \subseteq V$ terminals.
- $D: T \times T \to \mathbb{R}^+$ a semi-metric.

Goal: Find $f: V \rightarrow T$, identity on T, minimizing:

$$\sum_{(u,v)\in E} w_e \cdot D(f(u), f(v)).$$

Image: A image: A

The Metric Extension Relaxation

A solution f:

- Extends D from T to V.
- Satisfies: $\min_{i=1}^{k} \{D(u, t_i)\} = 0, \forall u \in V.$

< ロ > < 回 > < 回 > < 回 > <</p>

A solution f:

• Extends D from T to V.

Satisfies:
$$\min_{i=1}^{k} \{D(u, t_i)\} = 0, \forall u \in V.$$

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

A solution f:

• Extends D from T to V.

Satisfies:
$$\min_{i=1}^{k} \{D(u, t_i)\} = 0, \forall u \in V.$$

The metric extension relaxation (MET) ignores 2 above [Karzanov-98]:

$$(MET) \quad \min \quad \sum_{e=(u,v)\in E} w_e \cdot \delta(u,v)$$

$$s.t. \quad (V,\delta) \text{ is a semi-metric space} \qquad (1)$$

$$\delta(t_i,t_j) = D(t_i,t_j) \qquad \forall t_i,t_j \in T, i \neq j \qquad (2)$$

 $O(\log(k))$ [Călinsecu-Karloff-Rabani-05]

[Fakcharoenphol-Harrelson-Rao-Talwar-03]

round (MET)

 $O\left(\frac{\log(k)}{\log\log(k)}\right)$

$O(\log(k))$ [Călinsecu-Karloff-Rabani-05] $O\left(\frac{\log(k)}{\log\log(k)}\right)$ [Fakcharoenphol-Harrelson-Rao-Talwar-03]

round (MET)

Above algorithms consist of two steps:

- Select "scale" for each vertex.
- 2 Decompose the metric δ in each scale.

・ロト ・日下・ ・ ヨト

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

• Embeds vertices to Δ_k .

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_k .
- At least as strong as (MET).

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_k.
- At least as strong as (*MET*).
- Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:

integrality gap of $\alpha \Rightarrow \alpha$ -hardness.

A D M A B M A B M

Earthmover based relaxation [Chekuri-Khanna-Naor-Zosin-04]:

- Embeds vertices to Δ_k.
- At least as strong as (*MET*).
- Assuming UGC [Manokaran-Naor-Raghavendra-Schwartz-08]:

integrality gap of $\alpha \Rightarrow \alpha$ -hardness.

• Admits integrality gap of $\Omega(\sqrt{\log k})$ [Karloff-Khot-Mehta-Rabani-09].

イロト イヨト イヨト・

Comments:

イロト イヨト イヨト イ

Comments:

- Sknown algorithms do not know how to exploit earthmover metrics.
- **2** $O(\sqrt{\log k})$ barrier for designing and analyzing gap instances.

Comments:

- **(9)** Known algorithms do not know how to exploit earthmover metrics.
- $O(\sqrt{\log k})$ barrier for designing and analyzing gap instances.

Question: bridge the gap between $O\left(\frac{\log(k)}{\log\log(k)}\right)$ and $\Omega(\sqrt{\log k})$ for (MET)?

A D M A B M A B M

Theorem [Schwartz-T-20]

For every k, (MET) admits an integrality gap of $\Omega(\log^{2/3}(k))$ for 0-Extension.

イロト イヨト イヨト イ

Theorem [Schwartz-T-20]

For every k, (MET) admits an integrality gap of $\Omega(\log^{2/3}(k))$ for 0-Extension.

Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Graph Extensions

<ロト <回ト < 回ト

Definition

Nitzan Tur

・ロト ・四ト ・ヨト ・ヨト

メロト メロト メヨト メ

< ロ > < 四 > < 三 > <</p>

Vertices:

•
$$V_G \times V_H$$

イロト イヨト イヨト

Vertices:

• $V_G \times V_H$.

•
$$\{(g,h):h\in V_H\}$$
 is g's cloud.

Vertices:

• $V_G \times V_H$.

•
$$\{(g,h):h\in V_H\}$$
 is g's cloud.

• • • • • • • • • • • •

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

Image: A mathematical states and a mathem

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

イロト イヨト イヨト

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

Image: A math a math

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

Image: A math a math

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

A D M A B M A B M

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

A D M A B M A B M

Vertices:

- $V_G \times V_H$.
- $\{(g,h):h\in V_H\}$ is g's cloud.

Edges:

• intra-cloud edges are E_H .

A D F A B F A B F A
Graph Extensions

Comments:

メロト メタト メヨト メヨト

Comments:

O Naturally captures edge lengths:

$$\{\ell_{H}(e)\}_{e \in E_{H}}, \ \{\ell_{G}(e)\}_{e \in E_{G}} \qquad \Rightarrow \qquad \ell(e) = \begin{cases} \ell_{H}(e) & (\text{intra-cloud}) \\ \ell_{G}(e) & (\text{inter-cloud}) \end{cases}$$

メロト メタト メヨト メヨト

Comments:

Naturally captures edge lengths:

$$\{\ell_H(e)\}_{e \in E_H}, \{\ell_G(e)\}_{e \in E_G} \implies \ell(e) = \begin{cases} \ell_H(e) & (\text{intra-cloud}) \\ \ell_G(e) & (\text{inter-cloud}) \end{cases}$$

2 *H* has no edges \Rightarrow graph extensions coincide with lifts of graphs.

イロト イヨト イヨト イ

Comments:

Naturally captures edge lengths:

$$\{\ell_H(e)\}_{e \in E_H}, \{\ell_G(e)\}_{e \in E_G} \implies \ell(e) = \begin{cases} \ell_H(e) & \text{(intra-cloud)} \\ \ell_G(e) & \text{(inter-cloud)} \end{cases}$$

- **2** *H* has no edges \Rightarrow graph extensions coincide with lifts of graphs.
- In the second second

G and *H* are Cayley graphs and *K* is a group extension of *G* by H \downarrow *K*'s Cayley graph is in the support of Ext(*G*, *H*)

< D > < P > < P > < P >

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Image: A math a math

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

• g's representative f(g) is close to cloud g in G.

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is close to cloud g in G.
- **3** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is close to cloud g in G.
- **3** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

Recall proof overview:

- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is close to cloud g in G.
- **3** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

Notes:

- Need to quantify most and close.
- Captures split extensions of groups.

The Instance

・ロト ・回ト ・ヨト

- $X \sim \operatorname{Ext}(G, H)$ where:
 - G and H are constant degree high girth expanders on n vertices.
 - 2 $\ell_H(e) \equiv \log^{1/3}(n)$ and $\ell_G(e) \equiv \log^{2/3}(n)$.

Image: A math a math

 $X \sim \operatorname{Ext}(G, H)$ where:

• G and H are constant degree high girth expanders on n vertices.

2
$$\ell_H(e) \equiv \log^{1/3}(n)$$
 and $\ell_G(e) \equiv \log^{2/3}(n)$.

イロト イヨト イヨト イ

 $X \sim \operatorname{Ext}(G, H)$ where:

• G and H are constant degree high girth expanders on n vertices.

2 $\ell_H(e) \equiv \log^{1/3}(n)$ and $\ell_G(e) \equiv \log^{2/3}(n)$.

Image: A math the second se

 $X \sim \operatorname{Ext}(G, H)$ where:

• G and H are constant degree high girth expanders on n vertices.

2 $\ell_H(e) \equiv \log^{1/3}(n)$ and $\ell_G(e) \equiv \log^{2/3}(n)$.

<ロト < 回 > < 回 > < 回 > < 回 >

 $X \sim \operatorname{Ext}(G, H)$ where:

• G and H are constant degree high girth expanders on n vertices.

2 $\ell_H(e) \equiv \log^{1/3}(n)$ and $\ell_G(e) \equiv \log^{2/3}(n)$.

イロト イ団ト イヨト イヨト

イロト イヨト イヨト イ

イロト イヨト イヨト イヨ

• (T, D) shortest path metric on \mathcal{G} .

・ロト ・日 ・ ・ ヨト ・

- (T, D) shortest path metric on \mathcal{G} .
- Weights *w* are inverse of length.

Image: A math a math

• Our construction naturally gives a solution to (MET).

<ロト <回ト < 回ト

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.
- There are $\Theta(n^2)$ edges in the instance.

• • • • • • • • • • • • •

- Our construction naturally gives a solution to (MET).
- Each edge costs 1.
- There are $\Theta(n^2)$ edges in the instance.
- $\Theta(n^2)$ in total.

Image: A math a math

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

・ロト ・日下・ ・ ヨト・

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".
- Assume we have a small gap $O(\varepsilon^2 \log^{2/3}(n))$:

$$f: V_X \to T \text{ costs } O(\varepsilon^2 \log^{2/3}(n) \cdot n^2).$$

• At most εn^2 edges cost more than $\varepsilon \log^{2/3}(n)$.

イロト イヨト イヨト イ

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".
- Assume we have a small gap $O(\varepsilon^2 \log^{2/3}(n))$: $f: V_X \to T \text{ costs } O(\varepsilon^2 \log^{2/3}(n) \cdot n^2).$
- At most εn^2 edges cost more than $\varepsilon \log^{2/3}(n)$.

Conclusion: $\delta(f(u), f(v)) \le \varepsilon \log^{2/3}(n) \delta(u, v)$ for $1 - \varepsilon$ of the edges.

イロト イ団ト イヨト イヨ

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **1** g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

イロト イヨト イヨト イ

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **1** g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

- Distance between terminals $\geq L = \log(n)$.
- Intra-cloud neighbors distance is $\log^{1/3}(n)$.

イロト イ団ト イヨト イヨ

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **1** g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.

 \bigcirc f preserves some topological properties of G.

- Distance between terminals $\geq L = \log(n)$.
- Intra-cloud neighbors distance is $\log^{1/3}(n)$.
- Most intra-cloud neighbors are assigned to the same terminal.

< □ > < 同 > < 回 > < Ξ > < Ξ

• *H* is an expander.

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **1** g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

- Distance between terminals $\geq L = \log(n)$.
- Intra-cloud neighbors distance is $\log^{1/3}(n)$.
- Most intra-cloud neighbors are assigned to the same terminal.

イロト イヨト イヨト イヨト

• *H* is an expander.

Most clouds have a consensus and this consensus is the representative.

Split - Representatives are Close

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **(**) g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

イロト イヨト イヨト イ

Split - Representatives are Close

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **(**) g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

- Blue edges length is log(n).
- Red edges (inter-cloud) length is $\log^{2/3}(n)$.

イロト イ団ト イヨト イヨ

Split - Representatives are Close

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **(**) g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

- Blue edges length is log(n).
- Red edges (inter-cloud) length is $\log^{2/3}(n)$.

Cloud of f(g) is $\underbrace{\varepsilon \log^{2/3}(n)}_{gap} \cdot \log(n) / \log^{2/3}(n) = \varepsilon \log(n)$ hops away in G from g.

Split - Neighboring Representatives

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where:

- **1** g's representative f(g) is close to cloud g in G.
- **2** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- \bigcirc f preserves some topological properties of G.

イロト イヨト イヨト イ

Split - Neighboring Representatives

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where: **a** g's representative f(g) is close to cloud g in G.

2 most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.

 \bigcirc f preserves some topological properties of G.

- Red edges (inter-cloud) length is $\log^{2/3}(n)$.
- Blue edges (intra-cloud) length is $\log^{1/3}(n)$.

イロト イ団ト イヨト イヨ
Split - Neighboring Representatives

Intuition

Given $X \sim \text{Ext}(G, H)$ a split assigns to most clouds g a representative $f(g) \in V_X$ where: **a** g's representative f(g) is close to cloud g in G.

2 most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.

 \bigcirc f preserves some topological properties of G.

- Red edges (inter-cloud) length is $\log^{2/3}(n)$.
- Blue edges (intra-cloud) length is $\log^{1/3}(n)$.

$$f(g_1)$$
 and $f(g_2)$ are $\underbrace{\varepsilon \log^{2/3}(n)}_{\text{gap}} \cdot \log^{2/3}(n) / \log^{1/3}(n) = \varepsilon \log(n)$ hops away in X.

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is **close** to cloud g in G.
- **(a)** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

イロト イ団ト イヨト イヨ

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is **close** to cloud g in G.
- **(a)** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

- We have $f: V_G \rightarrow V_X$, the representative map.
- Let $\pi: V_X \to V_G$ projection.

イロト イ団ト イヨト イヨ

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is **close** to cloud g in G.
- **(a)** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

- We have $f: V_G \rightarrow V_X$, the representative map.
- Let $\pi: V_X \to V_G$ projection.

Topological Property: $\pi \circ f$ preserves the cycle structure of *G*.

イロト イ団ト イヨト イヨト

Given $X \sim \text{Ext}(G, H)$ a split assigns to **most** clouds g a **representative** $f(g) \in V_X$ where:

- g's representative f(g) is **close** to cloud g in G.
- **(a)** most neighboring clouds $(g_1, g_2) \in E_G$ have close representatives in X.
- f preserves some topological properties of G.

- We have $f: V_G \rightarrow V_X$, the representative map.
- Let $\pi: V_X \to V_G$ projection.

Topological Property: $\pi \circ f$ preserves the cycle structure of *G*.

Algebraic topology intuition: $\pi \circ f$ is a homeomorphism \Rightarrow it preserves the first homology.

イロト イヨト イヨト イヨト

Cycle-Homeomorphism

- $\pi: V_X \to V_G$, the natural projection.
- $f: V_G \rightarrow V_X$, the representative map.

・ロト ・日下・ ・ ヨト・

• f induces a map $\overline{f}: E_G \to \mathbb{F}_2^{E_X}$, "the short path map"

We call f a Cycle-Homeomorphism if $\pi \circ \overline{f} : \mathbb{F}_2^{E_G} \to \mathbb{F}_2^{E_G}$ is identity on cycles.

Cycle-Homeomorphism

Let g_1, g_2 neighboring clouds.

・ロト ・日下・ ・ ヨト・

Cycle-Homeomorphism

Let g_1, g_2 neighboring clouds.

イロト イヨト イヨト

Let g_1, g_2 neighboring clouds.

- g_1, g_2 are 1 hops away.
- $\pi \circ \overline{f}(g_1), g_1$ are $\varepsilon \log(n)$ hops away.
- $\pi \circ \overline{f}(g_2), g_2$ are $\varepsilon \log(n)$ hops away.

Image: A mathematical states and a mathem

Let g_1, g_2 neighboring clouds.

- g_1, g_2 are 1 hops away.
- $\pi \circ \overline{f}(g_1), g_1$ are $\varepsilon \log(n)$ hops away.
- $\pi \circ \overline{f}(g_2), g_2$ are $\varepsilon \log(n)$ hops away.
- $\pi \circ \overline{f}(g_2), \pi \circ \overline{f}(g_1)$ are $\varepsilon \log(n)$ hops away.

• • • • • • • • • •

Let g_1, g_2 neighboring clouds.

- g_1, g_2 are 1 hops away.
- $\pi \circ \overline{f}(g_1), g_1$ are $\varepsilon \log(n)$ hops away.
- $\pi \circ \overline{f}(g_2), g_2$ are $\varepsilon \log(n)$ hops away.
- $\pi \circ \overline{f}(g_2), \pi \circ \overline{f}(g_1)$ are $\varepsilon \log(n)$ hops away.

- The cycle $g_1 \rightarrow g_2 \rightarrow \pi \circ \overline{f}(g_2) \rightarrow \pi \circ \overline{f}(g_1) \rightarrow g_1$ has $O(\varepsilon \log(n))$ edges.
- The girth of G has $\Omega(\log(n))$.
- This cycle is trivial.
- *f* is cycle-homeomorphism.

(日)

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Image: A matched and A matc

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

• We need to choose a vertex "in" each cloud.

Image: A matched and A matc

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $|V_G|$ "variables" and $|E_G|$ "constraints".

Image: A matched and A matc

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $|V_G|$ "variables" and $|E_G|$ "constraints".
- Each variable has "n" possibilities.

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $|V_G|$ "variables" and $|E_G|$ "constraints".
- Each variable has "n" possibilities.
- Each constraint holds with probability of (1/n).

Recall Proof Overview:

- Construction of graph extensions.
- Small gap implies that graph extensions "split".
- Most graph extensions do not "split".

Informally:

- We need to choose a vertex "in" each cloud.
- Neighboring clouds have "neighboring" representatives.
- We have $|V_G|$ "variables" and $|E_G|$ "constraints".
- Each variable has "n" possibilities.
- Each constraint holds with probability of "1/n".
- If $|E_G| \ge 2|V_G|$, then split should not exist (via union bound).

A D F A A F F A

• All requirements, *e.g.*, "in" and "neighboring", hold approximately:

• All requirements, *e.g.*, "in" and "neighboring", hold approximately:

- Each variable has $n^{1+\varepsilon}$ possibilities.
- Each constraint holds with probability of $1/n^{1-\varepsilon}$.

• All requirements, *e.g.*, "in" and "neighboring", hold approximately:

- Each variable has $n^{1+\varepsilon}$ possibilities.
- Each constraint holds with probability of $1/n^{1-\varepsilon}$.
- On the constraints are not probabilistically independent:

- All requirements, *e.g.*, "in" and "neighboring", hold approximately:
 - Each variable has $n^{1+\varepsilon}$ possibilities.
 - Each constraint holds with probability of $1/n^{1-\varepsilon}$.
- Intersection of the probabilistically independent:
 - Define a suitable combinatorial structure that allows enough independence.
 - Linearly independent (modulo 2) cycles imply probabilistic independence.

A combinatorial structure that satisfies:

• Existence of split \Rightarrow existence of certificate.

イロト イヨト イヨト イ

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

number of certificates $\leq n^{(1+O(\varepsilon))n}$

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

```
number of certificates \leq n^{(1+O(\varepsilon))n}
```

• Provides enough (almost) independent constraints:

Image: A matched and A matc

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

```
number of certificates \leq n^{(1+O(\varepsilon))n}
```

• Provides enough (almost) independent constraints:

at least $|E_G| - |V_G|$ constraints each satisfied with probability $\leq n^{-(1-O(\varepsilon))}$

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

```
number of certificates \leq n^{(1+O(\varepsilon))n}
```

Provides enough (almost) independent constraints:
at least |E_G| − |V_G| constraints each satisfied with probability ≤ n^{-(1-O(ε))}

Conclusion: no split exists by union bound!

A combinatorial structure that satisfies:

- Existence of split \Rightarrow existence of certificate.
- There are not too many certificates:

```
number of certificates \leq n^{(1+O(\varepsilon))n}
```

Provides enough (almost) independent constraints:
at least |E_G| − |V_G| constraints each satisfied with probability ≤ n^{-(1-O(ε))}

Conclusion: no split exists by union bound!

A certificate encodes a "formal roadmap" of: union of all shortest paths in X between $f(g_1)$ and $f(g_2)$ for $(g_1, g_2) \in E_G$

() Union of all shortest paths in X between $f(g_1)$ and $f(g_2)$ for $(g_1, g_2) \in E_G$.

- **()** Union of all shortest paths in X between $f(g_1)$ and $f(g_2)$ for $(g_1, g_2) \in E_G$.
- Ontract all intra-cloud edges.

- **()** Union of all shortest paths in X between $f(g_1)$ and $f(g_2)$ for $(g_1, g_2) \in E_G$.
- Ontract all intra-cloud edges.
- **③** Contract vertices of degree ≤ 2 that do not contain a representative.

- **()** Union of all shortest paths in X between $f(g_1)$ and $f(g_2)$ for $(g_1, g_2) \in E_G$.
- Ontract all intra-cloud edges.
- § Contract vertices of degree ≤ 2 that do not contain a representative.

A vertex of the above graph is an Inner Connected Component.

Goal: upper bound the number of inner connected components graphs.

イロト イヨト イヨト イ
Components:

• Each component is a connected sub-graph of a cloud.

Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.

Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (*d* is its degree).

Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (*d* is its degree).

Edges between components:

• Each edge is a path in X between components.

Image: A matched and A matc

Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (*d* is its degree).

Edges between components:

- Each edge is a path in X between components.
- Each path has at most $\varepsilon \log(n)$ hops.

Components:

- Each component is a connected sub-graph of a cloud.
- Each component has n^{ε} vertices of X.
- Each component has $n^{\varepsilon d}$ "data" (*d* is its degree).

Edges between components:

- Each edge is a path in X between components.
- Each path has at most $\varepsilon \log(n)$ hops.
- Each edge contains $(d_G + d_H)^{\varepsilon \log(n)} = n^{O(\varepsilon)}$ "data".

Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

・ロト ・ 日 ・ ・ 回 ト ・

Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

• Remove a spanning tree.

Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.

Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.
- Each path closes a cycle "correctly" with probability of $\leq O(1/n^{1-\varepsilon})$.

A D F A A F F A

Scanning Inner Connected Components graph:

closing a cycle yields a constraint on a uniform random matching.

Question: how to upper bound probability of obtaining a certificate?

- Remove a spanning tree.
- Remaining edges correspond to disjoint paths.
- Each path closes a cycle "correctly" with probability of $\leq O(1/n^{1-\varepsilon})$.
- Each closed cycle is correct "independently".

Certificates - Bounding Probability (cont.)

Let χ be the Euler characteristic of the Inner Connected Components graph:

• $\Pr_{X \sim Ext(G,H)} [certificate] = n^{-\chi \cdot (1 - O(\varepsilon))}$.

- $\Pr_{X \sim Ext(G,H)} [certificate] = n^{-\chi \cdot (1-O(\varepsilon))}$.
- f is a cycle-homeomorphism \implies the cycles space of the Inner Connected Components graph is larger than the cycles space of G.

- $\Pr_{X \sim Ext(G,H)} [certificate] = n^{-\chi \cdot (1-O(\varepsilon))}$.
- f is a cycle-homeomorphism \implies the cycles space of the Inner Connected Components graph is larger than the cycles space of G.

•
$$\chi \ge |E_G| - |V_G| = (\frac{d_G}{2} - 1) n > n$$

A D F A A F F A

•
$$\Pr_{X \sim Ext(G,H)} [certificate] = n^{-\chi \cdot (1 - O(\varepsilon))}$$

• f is a cycle-homeomorphism \implies the cycles space of the Inner Connected Components graph is larger than the cycles space of G.

•
$$\chi \ge |E_G| - |V_G| = (\frac{d_G}{2} - 1) n > n$$

We are done by a union bound as:

$$\underbrace{n^{-\chi \cdot (1-O(\varepsilon))}}_{\text{probability}} \cdot \underbrace{n^{(1+O(\varepsilon))}}_{\text{no. certificates}} \leq n^{-(\chi-n)(1-O(\varepsilon))} \ll 1$$

A D F A A F F A

Questions?

э.

メロト メロト メヨトメ